
■      ii "mm rm  ,i"     ■ •nmmtmmmmm^mmm 

AD-770  631 

AN  ANALYSIS  OF   PARAMETER  EVALUATION OF 
RECURSIVE   PROCEDURES 

Lawrence  Snyder 

Carnegie - Mellon University 

J 
Prepared  for: 

Air Force  Office  of Scientific  Research 
Advanced  Research Projects  Agency 

April  1973 

DISTRIBUTED BY: m 
National Technical information Service 
U. S. DEPARTMENT  OF  COMMERCE 
5285 Port Royal Road, Springfield Va. 22151 

MM ttWfl mmm ■HüiyüMiuu MIHu 



  —— 

UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (Whtn Dal* Enltrtd) 

REPORT DOCUMENTATION PAGE 
1.   REP. ilSSr-^-73-2 0 08 2. GOVT ACCESSION NO 

4.    TITLE (and Submit) 

AN ANALYSIS OF PARAMETER EVALUATION FOR RECURSIVE 
PROCEDURES 

READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

3     RECIPIENT'S CATALOG NUMBER 

S.    TV 'E OF  REPORT ft PERIOD COVERED 

interim 

7.    AUTMORfaJ 

Lawrence Snyder 

6. PERFORMING ORG. REPORT NUMBER 

8. CONTRACT OR GRANT NUMBERf»; 

F44620-70-C-0107' 

9.    PERFORMING ORGANIZATION   NAME   AND  ADDRESS 

Camegie-Mellon University 
Department of Computer Science 
Pittsburgh, Pennsylvania 15213 

11.    CONTROLLING OFFICE NAME   AND  ADDRESS 

Advanced Research Projects Agency 
1400 Wilson Blvd 
Arlington, Virginia 22209 -~       —    c* * o _     .     .. . ■■■ ■ 
U.   MONITORING AGENCY NAME 4  ADDRESSfi/<</«e'»nt from Conltolling Ollicm) 

Air Force Office of Scientific Research (MM) 
1400 Wilson Blvd 
Arlington, Virginia 22209 

10. PROGRAM ELEMENT, PROJECT, TASK 
AREA A WORK UNIT NUMBERS 

6iiniD 
AO 827 

12. RC 'ORT DATE 

April 1973 
13.    NUMBER OF PAGES 

110 
15.   SECURITY CLASS, (ol thia report; 

UNCLASSIFIED 

15«.    DECLASSIF!(.ATION/DOWNGR. 
SCHEDULE 

16.    DISTRIBUTION STATEMENT (ol this Rmport) 

Approved for public release; distribution unlimited. 

17.    DISTRIBUTION STA .EM' NT (ol (/!• mbaltael «ntarad In Block 20. U dlllerenl Irom Report) 

18.    SUPPLEMENTARY NOTES 

19.    KEY WORDS (Conltnuo on rtvrf lid» II n»ctt»mry and Idanllt- by block number) 

Reproduced by 

NATIOhJAL TECHNICAL 
INFORMATION SERVICE 

U S DrpoMmcnl of Commerce 
ringfield ^A 77151 

20     ABSTRACT (Continue on reverse aide II neceaeary end Identity by block number) 

Let Pn be the class of recurbive program schemata using method x as a 
Kx 

parameter binding mechanism for procedure arguments. Methods of call by 

value (v), call by copy (c), call by reference (r), call by name (j), and 

"normal" evaluation (n) are studied. Call by name is "stronger" than the 

DD    I rANM73   1473 EDITION OF   1 NOV 65 IS OBSOLETE UNC'ASSIFIED 

jA 
SECURITY  CLASSIFICATION  OF   THIS PAGE (When Dare Entered) 



i mtmißmimm» mm^w*******  ' ■ 

i-,»'.. i    '   -. ■ i i   i .  ,■ 

ItCirRlTY CUAStiriCATION Of THIS ^ÄOCfWTfn Dmf Mntmfd) 

i a. 
Item 20. Abstract   (Continued) 

others  (P      <    P    ,  x = V,c,r,n)  not because evaluation is postponed, but 
Rx Rj 

because it is repeated.    Markers and global varialbes augmentation is studied 

and one result is  P        is"universaln.      P_      <    P        is conjectured and 

discussed.    Relationships with data structures and fixed point theory are 

discussed as well as  some decision proKems. 

UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS "AGEfHTi.n D«r» Enttttd) 





»i 

11. 

Abstract 

A class of recursive program schemata PR is defined abstracting 
ALGOL-like procedures. Four generic types of parameter evaluation are 
considered; call by value, PRV, call by copy, PRc, call by reference, PRr, and 
call by name, PRj. Two other types of theoretical interest are also 
considered: "normal evaluation", Ffin, a non-side effect, evaluation 
postponement mechansim and call by ouote, PRq, an extension of call by name 
with all assignments to formals Uf evaluated. For evaluation method x, 
augmentation with global variables, PRx„, and augmentation with a finite 
number of markers, P^ are also considered.   The results include. 

-  PRc 5 PRr s PRn PR*C) " PRKn < PRj s PRjq - PRjn a PRq 
where x = v, c, r, and n. The results are correlated with the notion of 
fixed point computation and although call by value, copy and reference do 
not, in general, compute the least fixed point, for any functional an 
equivalent one may be found for which these three do compute the least 
fixed point. 

That call by name is stronger than the other generic evaluation 
mechanisms derives not from postponing evaluation, but from repeated 
evaluation, i.e. side effects. The last two terms in the relation list are 
"universal". Additionally, its shown that if PRj ■ PRjn and if PRj 
they cannot be constructively equivalent. 

PRq,  then 

An abstract model of parameter evaluation is developed and the 
constituent components of parameter evaluation are isolated. These help to 
characterize what impact choices of parameter evaluation have on the 
language in general. This understanding motivates the class PRq and binds 
our analysis with that of the lambdo calculus models. The question of 
recognizing when two parameter evaluation mechanisms coincide is studied, i.e. 
when two mechanisms always compute the same resrlt for the same schema. 
The general problem is not partially decidable for seperable evaluation 
mfichanisms. For free recursive schemata employing the generic mechanisms, 
the coincidence question is decidable. 

A discussion of the utility of such analysis and some thoughts on 
future directions for research are included. 
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1.    Introduction. 

1.1 Motivation and Overview. 

"Parametrr evaluation," "argument substitution," and "formal - actual 

binding" are some of the names which have been used to describe the 

object under investigation in this thesis. The activity of parameter 

substitution has received considerable attention in many contexts, the lambda 

calculus being one example. Our motivation for studying this phenomenon is 

to understand the Mmantlei of parameter evaluation in the context of 

programming languages. To clarify our pvint of view, consider these 

observations. 

In ALGOL there are two methods of parameter evaluation defined for 

the language: call by value and call by name*. Call by value is a natural, 

uncomplicated and quite efficient method of evaluating parameters. It is also 

most familiar to us. In contrast, rail by name is subtle, generally inefficient 

and extre nely complex to implement. But that's not all. The presence of 

call by fame among the repertoire of facilities in the language pervades the 

entire implementation of an ALGOL compiler. Many semantic issues, which 

would be easy to implement without call by name, have added complexity. 

For  example, the  'i'in-time" stack discipline would be far simpler were  it not 

* The term call b/ namt has been applied to quite a few different 
parameter passing devices in the literature. Our understanding of this term 
is consistent with that given by Ekman and Froberg [5]. See also 2.1.5 for 
a definition. 

m ■ ---- 
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for call by name. Optimizations such as common subexpression elimination 

would be considerably easier since the "order of evaluation" rules could be 

by-passed more easily. These are just two examples; a compile'' writar 

could, no doubt, find a dozen. 

Since '»LGOL already has call by value, the question which one asKs is 

"Does call by name provide any extra' facility in return for the added 

expense and complexity?" Of course, the question must be suitably formalized 

(and will be) to be answered, but one's intuitive feeling is to give an 

unqualified "yes". It is, indeed, powerful, convenient and flexible. 

Furthermore, one feels that the apparent advantage derives from the 

evaluation postponement which may avoid initiating potentially divergent 

computations. Call by name will be shown to be "more powerful" than call 

by value, but not because it postpones evaluation! 

Call by name and call by value are not, however, the only methods by 

which functional parameters are bour.u to their formal representatives. 

Hence, our task will be more gene-al than suggested above. We shall make 

a comparative analysis of several well known parameter evaluation 

mechanisms. In Chapters 2 and 3 we will study five generic parameter 

passing mechanisms and the results will provide one measure of how 

substantive the apparent differences really are among such mechanisms. 

The comparative analysis will also suggest which components of a 

parameter  binding  mechanism aie fundamental.     Chis insight will then be  used 

r*m MftiMii—iMIl Jli^il   ■tmMUMUtkmu     ■■MdMaaci^^h»an .*■   .i UM 
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in Chapter 4 to formulate an abstract model of the parameter binding activity 

as it is used in contemporary programming languages. The model will 

provide a convenient method of specifying the salient features of a particular 

mechanism. Such specification will expose the similarities and differences in 

the mechanisms discussed before. Even the consequenses of some simple 

changes in definitions will become predictable. More importantly, it will 

suggest different ways in which parameter evaluation might be generalized. 

A generalization will be chosen and the consequences will be explored. 

Finally, this model of parameter evaluation, which enables its 

decomposition into constituent paits, will be used to study questions of 

interest to a compiler wnter. In particular, we recognize that parameter 

evaluation provides several semantic facilities, for which the compiler writers 

must generate code. In Chapter 5 we address the question of recognizing 

when these particular facilities are used. The assumptions made by compiler 

writers are made explicit and in this context we consider decidability 

questions for s-.-mantic constituents of parameter binding. To the extent that 

this is successful, the compiler writer can perforn, optim^ations. 

Chapter 6 discusses the overall utility of this type of analysis. 

Directions for further research will be suggested. 

m mm mmmm mä 
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1.2.    Background. 

This thesis has its origins in two areas: the art of compiler writing and 

language design and the theory of program schemata. The former suggested 

the questions; the latter provided some answers. The literature on compiler 

writing and language design is plentiful enough, but little of it is relevant 

since it tends to deal with all features of a particular language rather than a 

particular feature of many languages as we intend to do. Hence, each 

parameter evaluation mechanism is specifically referenced when it is 

introduced. The reader may consult [13] for a description of several of 

them, however. For compiler related issues, our vocabulary is basically 

consistent with that used in Randell and Russell's book on ALGOL 

implementation [19]. 

By comparison with programming languages the literature on program 

schema*d is less plentiful (although it is still substantial.) Since we draw on 

work by several investigators, we now present a brief introduction to the 

relevant literature to enable the reader to understand the context in which 

we work. 

Although the interest in the last five years has become quite intense, 

the earliest work is generally attributed to I. ianov [11] in 1958 (see 

Rutledge [21] for a translation and generalization.) ianov's model was that of 

a simple flowchart language with one location. Many questions were 

decidable  since the model was equivalent to a finite automaton.     The Russians 

■tMMBMMA^M •-—■—•^"    A 



followed the path of adding limited generalizations and studying equivalence 

preserving transformations. Ershov [6] provides a good review. Meanwhile, 

Luckham and Park showed in 1964 that the equivalence problem for 

flowchart schemata (with two or more locations) was unsolvable. Subsequent 

results by Paterson [17] and Luckham, Park and Paterson [14] showed that 

weaker notions of equivalence are also undecidable. 

The unsolvability results have led investigators to study program 

schemata with restrictions. Among these are loop-free schemata, free 

schemata (any path is an execution path) and liberal schemata (no expression 

recomputation) [17], monadic schemata {or?. place functionr and predicates) 

and independent location, monadic schemata [14], We will also find that 

unsolvability prevents us from fully exploring all of the questions of interest 

to us and so we will adopt the free schemata restriction in our later work. 

Recursive schemata have also received considerable study. These come 

in seve'al syntactic varieties, the most frequently used having been 

introduced by McCarthy [16]. Strong [22] has studied the translatability of 

these recursive equations into flowchart schemata. Garland and Luckham 

have considered a restricted version of this problem: Ihe translatability of 

monadic recursion schemata. 

Paterson and Hewitt [18] appear to have initiated a type of schematic 

study which they termed romf>nrntivc srhomntology. This study can be 

defined   as   the   comparison   of   classes   of   functional'   defined   by   different 

il 
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classes of schemata. Typically, the two classes will be defined so tha( one 

has an extra semantic facility available. Then any differences in the clashes 

of functional defined are attributed to that construct. Other studies in 

comparative schematology have been carried out by Hewitt [9], Constable f.nö 

Gries [4] (upon which much of this work is based), Brown [1], and Brown, 

Gries and Szymanski [2]. 

The techniques of compirative schematology will be employed in what 

follows. In addition, we will want to use results consistent with those of 

other authors. Thus, we present in the next section some definitions and a 

few pertainent results. 

1.3.    Definitions and Earlier Resui*s. 

The vehicle for our investigation of parameter evaluation mechanisms is 

a class of recursive program schemata. Our definition is essentially that one 

introduced by Constable and Gries [4]. Other models of recursion might 

have been used, but this seems a more reasonable model of languages such 

as ALGOL and PL/1. We will add the apparently trivial generalization that 

auxiliary functions (i.e. user defined functions) may appear as actual 

parameters to auxiliary functions. As is shown later, this simple 

generalization can have quite important consequences for certain parameter 

evaluation strategies, without seriously perturbing this simple model. 

mmmm - • ■ • 



This definition is to be a "complete" specification of recursive program 

schemata without any specification as to the w« / in which parameters are to 

be evaluated. We will define separate classes for e.xh kind of evaluation by 

aughienting this class with the required semantics. 

Let V, F, P, I. and C be disjoint enumerable sets of symbols called 

variable names, basic function names, basic predicate names, label identifiers 

and auxiliary function names, respectively. 

Drfinition   1.3.1:   Define   the   productions*   of   the   grammar   G   with   sentence 

syrnbo1 <rec program> to be: 

::= <program>{<function def>} 

::* <V - list> : <body> 

::« <aux function>[<V - list>] : <body> 

::- <S - list>i [<label>:] h8lt(<variable>) 

::= [<label>:]<S> {; [<label>:]<S>} 

::= (<variable> {, <variable>}) 

::= empty 

| <variable> ♦■ <term> 

| if <predicate>[<V - list>] 

♦». .<i [<l ibel>:]<S>    else [<label>:]<S> 

| hslt(<Vfl'iable>)   | goio <label> 

| begin <S - ll»t> end 

<rec program> 

<program> 

(♦)    <function def> 

<bod/> 

<S - list> 

<V - list> 

<S> 

*  Here  we  use extended BNF  notation where  (t) and [t] mean "zero or more 
occurrences of t" and "zero or one occurrence of t," respectively. 

  mt^m mtmtmm 



<variable> 

I <basic function>[<V - !ist>] 

| <aux function>[<T - list>] 

(<ferm> {,<ferm>}) 

^(erm> ::- 

<T - list> ::- 

where: 

<variable> ( V 

<basic function> ( V 

<predicate> i P 

<label> ( /, 

<aux function> ( C 

The   grammar   G  will   define   the   acimissable   syntactic   form  of   our   schemata. 

The    notation   Rf,   Rp   and   RG   will   be   used   to   denote   rank   (number   of 

parameters) of elements f i F,p i P and G ( C, respectively. 

Doftuition    1.3.2:   A   schema   S   in   the   class   B   of   basic   recursive   program 

Schemata   is   a   terminal   string   in   the   language   L(G)  such  that   the   following 

semantic restrictions apply: 

(i)   The   variables   in   <V   -   list>   preceding  <body>   for   both   <program> 

and <function def> must all be different elements of V. 

(ii)   The    <aux   function>   names   for   any   <function   def>   must   all   be 

different elements of C and they must all be defined. 

(iii)   The   significance   of   <label>s   and   <variable>s   of   any   <body>   is 

restricted in scope to that <body> and 

(a)    all    statement    <label>s    within    a   <body>    must    be    different 

BMMMIM  ■- 
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elements   of   I.   and   each   L   in   goto   L   must   be   defined   in   that 

<body>l 

(b)   all   <variable>s   used   in   a   <body>  which   are   not   in   the   <V   - 

list>   preceding   that   <body:>   are   called   locals   and   are   initialized 

to undefined (0) prior to executing the <body> 

(iv)   The   arguments   to   basic   function   naines   and   predicate   names   are 

evaluated sequentially, left to right. 

(v)   Th9   result   of   any   <body>   is   thj   value  of   the   argument   variable 

to the first halt statement encountered. 

Our conventions for symbols throughout the thesis will be as follows: 

variables names 

basic function names 

basic predicate names 

label identifiers 

auxiliary function names 

V = {u.v.w.x.y.z.Uj.Vi.W!, . . .) 

F = {fM } 

P = {p,p1,P2)  •  •  •   ) 

I. ■ {UiJ* .. . } 

C ■ {0,0^02, .. . } 

In later constructions we will use names not appearing in the above lists but 

which have been chosen for their special semantic conten*. The type of 

objects which the symbols denote should be clear from context, however. 

Kxnmph: 

M: z «- G(x); halKz) 

G(y): if p^y) then w •- fj; 

•It« begin 

- a. 
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z «- G(f3(y)); 

w «- f2<y,z) end 

hilt(w) 

A sample schema, S, in the class B of basic recursive program schemata. 

One auxiliary function (G) is defined, three basic function names {fi,i2,iz) 

and the basic predicate name (pj) have been used. 

As an example of adding a parameter evaluation mechanism to the 

basic class, we give the definition of the chss PR of recursive program 

schemata presented by Constable and Gries. 

Drfimtion 1.3.3: [4] A schema S in the class PR of recurtive program 

srhrmntn (with call by value) is a terminal string in the grammar formed by 

replacing the production Libeled (**) in the grammar G given above with 

| <aux function>[<V - list>]. 

Actual   parameter   variables  (the only  kind of  actuals  in this class) have their 

values   assigned   to  formal   parameters  prior   to  execution of the  function  and 

the formats are then treated just as locals. 

The schema cannot be meaningful until a domain, D, has been specified. 

The domain is the class of objects which are manipulated by the schema, e.g. 

D = {0,1,2, . . .} or D = {strings over a finite alphabet). Given D, the (tola!) 

basic functions and (total) basic predicates may be chosen from the classes 

F{D) - {fn:DR» -» D) and P(D) - {pn:DRp ■» {true,false}}, respectively.   Finally, the 

MMMB UMfcfc—■■■■min  . ... 
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input variables are chosen from the domain and the schema may be 

"evaluated" with this interpretation. The way in which the eval.iation takes 

place should be cle »r, since the constructs have their obvious meaning 

consistent wilh the comti,ents in the preceding paragraph. 

Ktnmplr: Two interpretations for the schema S in the above example. 

'D Dji {0,1,2, . . .}     (2) D2= {LISP lists} 

fl ■ 1 fj = NIL 

'2 s *><.y[* * y] fj ■ Xx,y[cons(car(x),y)] 

h* ^[« ■ 1] fa H Xx[cdr(x)] 

Pi ■ Xx[x =0] p, = Xx[x = NIL] 

The    schema    S^^^pJU)   instantiated    according    to   (1)   defines    x! 

over Dl and instantiated according to (2) defines nveneb) over D2. 

Evidently,   a   schema   S   with   r   basic   function   names,   s   basic   predicate 

names, and t input variables and a domain D define a mapping 

S:MDK x P(D)S .♦[D»-* D] 

of basic functions and predicates into the class of functions from t-tuples of 

domain values to domain values. These mappings are called /unr»iono/« over 

D. The set of all functional over D computable by schemata in the class B 

is denoted FUNC(B,D). The use of functionals allows a comparison of 

schemata classes with differing data and control sfiuctures. Two other 

classes of interest will be defined below. Our comparison of classes of 

schemata requires the following definition. 

mmtm i 
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Definition 1.3.4: [4] Two schemata $! and $2 with r basic function lames, 

♦l> • • -^r. s basic predicate names pj, . . .p, and t input variable names 

vl» • •  -.Vj are equivahnt over D if and only if 

Si[fi, • • .,fr,Pi, . . MPSXVII • • .,v,) 

= S^fj,   .   .   ..fr.Pj,   .   .   ..pJiVi,   .   .   .,V,) 

for all values of v, in D. Two schemata are equivalent if and only if they 

are equivalent for all D. Thus, they are equivalent if they compute the same 

functionals over all D. 

Definition 1.3.5: [4] Two classes of schemata C^ and C2 are related by 

Cj < C2 if for every schema Si ( Cj there exists a schema S2 < C2 such that 

Si is equivalent to S2. Ci = C2 if and only if C| < C2 and C2 < C1( i.e. 

FUN^CLD) E FUNaC^D).   C! < C2 if and only if Ci < Cj, and not C2 < Cj. 

In order that we may integrate our results with those which have 

preceded ours, we now present definitions for two nonrecursive classes. The 

class, P, of flowchart schemata has been extensively studied (see 1.2). Array 

schemata were introduced by Constable and Cries [4]. It will be convenient 

to refer to both classes in our subsequent work. 

Definition 1.3.6: The schema S in the class P of ümpU flowchart tchcmata is 

a te.minai string in the grammar formed by deleting the two productions 

marked (*) and (**) from grammar C. 

Definition   1.3.7: [4] The class Pfl of program tichemnta augmented with array» 

"MWnMiMin——IM—ir-       1 1—!■■ 
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is the class P with the additional productions: 

<S>     :;-     v ♦- 0 | v «- w + 1 

<tern> ::= A[v] 

and a one dimensiona' array A of simple variables A0, Aj, . . . . To allow 

subscripting, a subscript se* N = {0,1,2, . . . } is provided which is disjoint 

from the domain D. Any simple (or array) variable may take values in 

D U /V. The term A[v] refers to Av if the value of v ( /V and Ae otherwise. 

If the value of some variable v is in /V and v is used as an argument to a 

basic function, basic predicate or to a halt statement the value fl is used 

instead. The remaindtr of the semant-s should be obvious and the reader 

may consult [4] for further details and a discussion of how reasonable a 

model this is of array languages. 

Asxrrtion 1.3.8: [4] P < PR < Pf,. 

Assertion 1.3.9: [4] Pq is "universal" for total interpretations. 

The notion of universal means intuitively that the class computes all the 

functionals computable in an effective way. In [4] Constable and Gries show 

several classes which are equivalent to Pn lepresenting several kinds of 

semantic facilities. Brown [1] and Drown, Gries and Szymanski [2] hav^ 

found others. An nteresting feature is that al'.hough there are a number of 

universal clasjes, Pp cannot be constructively equivalent to most of those 

investigated thus far. We shall hhve more to say about this in Chapters 3 

and    4.      The    interested   reader   should    consult    [4]   for    a   discussion    of 
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universality. 

/hsrrtion   1.3.10:   [14]   For   a   schema   S   (   P,   it   is   not   partially   decidable 

whether S diverges under all interpretations. 

This completes the definitions and results required to properly present 

our results and correlate them with that which has gone on before. In what 

follows, we adoot the usual procedure of "proving" our results by presenting 

a construction to justify our claims. The constructions are gcrerally 

suffMiently simple so that we may avoid the tedium of proots by induction 

on state transitions and similar proof methods. 

mmam mm^ MMMHH 



15 

2.    The Weaker Parameter Evaluation Mechanisms. 

2.1.   Definitions. 

In this section we employ the class of basic recursive prograr 

schemata (see 1.3) to define several classes of schemata which employ 

differing parameter passing mechansims. One can consider quite a few 

different ways in which formals and actuals could be made to correspond, 

but our intention is to study those mechanisms which are actually in use or 

which contribute to our understanding of the subtleties of other mechanisms. 

Hence our attention will initially focus on five methods: 

call by value (e.g. ALGOL) 

call by copy (e.g. WATFOR) 

call by reference (e.g. certain versions of FORTRAN) 

"normal" evaluation (see below) 

call by name (e.g. ALGOL) 

When   these   have   been   fully   explored,   we   will   direct   our   study   towards 

variations.     First   we   discuss   what   facilities   are   provided   by   these   generic 

mechanisms. 

The formal notations available to us for specifying semantic notions 

either omit or obscure the detail which we wish to present in the following 

definitions of parameter evaluation. Therefore we are left to describe these 

concepts in English. To make this task easier, let us define formal parameter 

as  a parameter in the formal specification of an auxiliary function.    An ortual 

—■MMMillMIMi«! 11 ■■inh     i 
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parameter is a parameter which is used in a function call. In example 2.1.3, 

x is an actual and y is a formal. Note that within the function definition 

formals may, in turn, be used as actuals. 

The five types of recursive program schemata which we will consider 

vary only in the semantics of the parameter passing and formal variable 

reference. These differences manifest themselves at three differrnt points in 

the "interpreter": 

(i)     auxiliary    function    initiation    -    operations    performed    before 

execution of the <body> of the function begins. 

(ii)   interpretation   of formal   parameters   -   method   by   which  the   value 

of the formal, referenced in the text, is found. 

(ill)    auxiliary    function    termination    -    operations    per'ormed    before 

execution resumes at the point of the call. 

Thus the definitions given below will concentrate on the semantics at these 

three points. Regardless of »he kind of parameter evaluation, auxiliary 

function initiation (i) includes the initialization of the local variables to 

undefined (n) and auxiliary function termination (iii) includes returning the 

value of the argument of the halt as value of the 'jnction. When auxiliary 

function termination only involves returning the .'unction value, it is elided in 

the following definitions. 

Definition    2.1.1:    A    schema    in   the   class    PRv   o'    rccunive   program 

schemata   with   call   hy   value   parameter   evaluation   is   a   basic   recursive 

1— - ^.-^—^^—>    
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prograt.i schema such that in the interpretation: 

(i) auxiliary function initiation; the actual parameters are evaluated 

sequentially, left to right. The formats are then initialized to the 

\ alue of their corresponding actuals. 

(ii) hterpretation of forma! parameters: the same interpretation as 

that of local variables. 

Definition 2.1.2: A schema in the class PRc of recurtive program 

ichcmnla with call by copy parameter evaluation is a basic recursive program 

schema such that in the interpretation: 

(i) auxiliary function initiation: as in 2.1.1(0. 

(ii) interpretation of formal parameter'-.: as in 2.1.1(ii). 

(iii)     auxiliary     function     termination:     the     value     of     each     formal 

parameter   is   copied   into   its   corresponding   actual   parameter   if   and 

only     if     the     actual     is     a     simple     variable.       Copying     proceeds 

sequentially, left to right. 

Example 2.1.3: 

(x): w «- G(x): halt(x) 

G(y):        y •- f^y); halWy) 

A  sample  schema  S.    The  functionals definec. are as follows: if S <  PRV then 

S[fiKx) = x and if S( PRc then S[fJ(x) = f^x). 

Thus   call   by   copy   allows   computations   from   a   called   function   to   be 

returned   to   the   calling   environment   by   way   of   parameters   as   well   as  the 
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normal value returninp mechanism of the recursive function. Such a facility 

is often convenient but there is an alternative way of realizing a similar 

effect a. we now see. 

Nev we introduce call by reference parameter evaluation. Call by 

reference is a natural method of passing parameters for computers since the 

reference to a value is merely its "memory address." Although -nomory 

addresses have not been introduced, they need not he since we can achieve 

the same effect by admitting variable names (elements of V) as values. 

Thllfi if x is i formal in a schema with call by reference then its value will 

be a name, say y, out of V. We will call y the reference value of the 

formal x. If the value of y is a value from the domain, say d, then we say 

'he coerced value of the formal x is d. If the value of y is a reference 

v alue, then the coerced value of x is, inductively, the coerced value of y. 

Definition 2.1.4: A schema in the class PRr of rccurxive program schemata 

with call hy reference parameter evaluation is a basic recursive program 

schema such that in the interpretation: 

(i)   auxiliary   function   initiation:   if   for   any   formal   x   the   corresponding 

actual    is    a    function    call    (basic    or    auxiliary)    then    a    turrogote 

variable   w   <   I'   is   chosen   which  does  not   appear   elsewhere   in   the 

schema. 

The    formals    are    assigned    values,    proceeding    sequentially    left    to 

right, as follows.   Let x be a formal, then assign to x: 

MMIMMMIlMMnH^MHMMnMM 



^mmmi*Symm^^T**mm^*^^**~*\    n  \.i\\Mmm^^—^*~~^^mm*^^~^^~^^m^m^^mi*m 

19 

(a) the nnma of the surrogate variable if the corresponding 

actual is a function call, (i.e. x has reference value w.) The 

function is evaluated and the value is assigned to the 

surrogate w. 

(b) the name of the correrponding actual if the actual is a 

simple v.-iriable but not a formal, 

(c) the reference vnlue of the corresponding actual if it is 

itself a formal. 

Note that in (c) the formal is assigned the reference value of its 

correspondent and so, there can be a4 most one level of 

indirection, (i.e. no formal can have a reference value which is 

itself a reference value.) This is equivalent to an arbitrarily long 

chain of references (see 4.1) but it simplifies our constructions, 

(ii) interpretation of formal parameters: 

(a) if the formal x is not on the left hand side of an 

assignment then the value is the coerced value of x. 

(b) if the formal x is on the left hand side of an 

assignment, then the assignment is to the reference value of 

x, (i.e. the coerced value of x is changed, not its reference 

value.) 

Call by copy and call by reference are frequently thought to be two 

methods of realizing the same facility, namely, returning information by way 

Of   the   parameters.     The   following   example   indicates   that   these   are   not 
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necessarily the identical for all schemata. 

Example 2.1.5: 

(x): u <- G(x(x); hill(y) 

G(y,z):       y *■ f^y); 2 ^ f^z); hilt(y) 

A  sample schema  S such that the functionals computed by call by copy and 

call   by   reference   are   as   follows:  if  S  (   PRcl  then   SftJW   -  f^x)  and  if 

S (  PRr, then S[f1](x) - f^x)). 

In Manna, Ness and Vuillemm [15] a parameter evaluation mechanism, 

the "normal" evaluation rule, is introduced. If is shown that call by value is 

strictly "weaker" than "normal" evaluation by showing that the former is not 

a "fixed point" rule and the latter is. These results are shown for 

recursive equations and there can be no possible side effects. Although 

their model is somewhat different from ours (see 2.3), the following should 

be a faithful rendering of the intent of their definition. The relationship of 

our results to theirs will be discussed later. 

Definition 2.1.6: A schema in the class PRn of recurnve program »chemata 

with normal parameter evalundon is a basic recursive program schema such 

that in the interpretation: 

(i) auxiliary function initiation: no evaluation is performed. 

(ii)   interpretation   of   formal   parameters:   when   a   formal   parameter   is 

encountered      for      the      first      time      in      this      environment      the 

corresponding    actual   is   evaluated   and   the   value   assigned   to   this 
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formal.      It    used   for   this   and   all   subsequent   formal   references   in 

this environment as though it was a local. 

Clearly, with PRn parameter evaluation may be postponed or even avoided 

entirely. This has no effect in the case where parameters are simple 

variables or basic functions with non-formal parameters. But if an actual iö 

an auxiliary function, it may be partial and hence postponement appears to 

offer an advantage over, say, call by reference. 

Kxamplfi 2.1.7: 

Mi u - Gj^G^x»; MKu) 

G^y.z):    halt(y) 

G2(w):       w i- G2(w); h8H(w) 

A   sample   schema   S   such   that,  if   S  (   PRr   then   S[](x)   =   undefined   and   if 

S <  PRn then S[](x) = x. 

Next we introduce the ALGOL call by name parameter evaluation 

mechanism. Although it postpones evaluation just as normal evaluation does, 

it differs in a very important way. Each time an occurrence of a formal is 

encountered, it requires a separate evaluation. Thus the side effects of 

one evaluation may influence the results of a subsequent tv-jiuation. 

Definition   2.1.8:   A   schema   in   the  class   PRi of   rccurtivi»  program  schemata 

with   call   hy   name   parameter   evaluation*   is   a   basic   recursive   program 

*   Call   by   name   is   sometimes   referred  to   as   "Jensen's   device"   after   J^rn 
Jensen, hence the class name PR.. I 

^tmimmm Mtlilii   
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schema such that in the interpretation: 

(i) auxiliary function initiation: no evaluation is performed, 

(ii) interpretation of tormals: 

(a) if the formal is not the left hand side of an assignment 

then the corresponding actual is evaluated in the environment 

of the call. The resulting value is the value of the formal 

for this evaluation of this occurrence only. 

(b) if the formal is the left hand side of an assignment then 

if the corresponding actual is a simple non-formal variable 

then it receives the value of the assignment. If the actual is 

a function call, (hen the entire assignment statement is 

ignored. If the corresponding actual is itself a formal this 

process is applied recursively with this formal as the left 

hand side. 

Clearly, in evaluating a formal the actual corresponding to it may be a 

formal in the calling environment and thus one must return to earlier and 

earlier calling environments as long as the corresponding actual continues to 

be itself a formal. \Jote that in 2.1.8(ii)b, there »r« some consequences to 

our decision to ignore the entire assignment statement if the actual is not a 

simple variable but the corresponding formal is used on the left hand side of 

an assignment statement. In particular, one might consider evaluating both 

sides of the assignment statement and then disregaroing the values. This 

would   allow   more   "side   effects"   but   would   it   actually   enlarge   the   class  of 
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functionjls defined? It does not, but we postpone the proof until section 3.1. 

Example 2.1.9: 

(x): u «- Gj(x,G2(x)); MKu) 

Gi(yi,y2): w «- f2(y2ly2.yi); hilt(w) 

G2(w):       w «- f^w); halt(w) 

A  sample  schema  S  such that, if S <  PRn then S[f1,f2](v) - f^iUMiW.x) and 

if S i PRj then S[f1,f2](x) = f^xMi^WM^U))). 

To emphasize the differences between tne parameter evaluation 

mechanisms just defined, w present a schema from L(G) together with the 

results of interpreting it as an element of each of the five different classes. 

Exam pin 2.1.10 

(u):v 

G(x,y, Z): 

Gfu^u)); MKu) 

x «- f2(x); 

y «■ f3<y)j 

y *■ f4(y.z)i 

halt(x) 

(Note [hi it the value o f the schema is the ac tual parameter u.) 

Clan» Schnmn Remit 

PRV 
u 

PRO fMuWidi)) 

PRr f4(f3(f2(u)),fi(u) 

PRn u 
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ft I MWuWrfWu)))) 

In 1.3 we commented that allowing function as actuals would not change the 

results given earlier. This is immediate when one observes that for any 

schema S ( PRv an equivalent schema in PR can be constructed by merely 

expanding each call of the form 

u «- G(<term>1,<term>2,...,<term>RG) 

to be 

begin        wj «- <term>Ji 

W2 *- <term>2; 

...    i 

wRC - <term>RCi 

u ♦- G{wllw2,...,wRC)      end 

where each w, is a new variable.    Thus our class of recursive schemata with 

call   by   value   is   equivalent   to   the  one  introduced  by  Constable   and  Gries. 

We refer to this technique as coarcing actuah. 

2.2.    The Classes PRc, PRr and PRn. 

The examples of the last section illustrated that there is considerable 

diversity among the various parameter evaluation mechanisms. The 

differences are reflected in the convenience with which one writes programs, 

efficency of execution, the strategy of implementation of recursive execution 

and   the   ease   with   which   one   verifies   that   a   program   is   correct.     Our 

I^M ■MM MBMBHMlMMMi Uli»—IllMlM  . 
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interest in this section is in whether or not the differences are reflected in 

"what can be computed." We might expect that the facility of returning 

parametric values and the facility of evaluation postponement would both 

provide a co.-iputational advantage. We shall discover, however, that call by 

value, call by copy, call by reference and, surprisingly, normal evaluation are 

all equivalent in the sense that their respective functional classes are 

equivalent. In addition, we shall show that global variables and markers do 

not enhance the computing "power" of these classes of functionals. 

Theorem 2.2A: PRv  E PRC. 

Prwf: Using the construction described at the end of the previous section, 

all actuals of a schema S < PRV may be shielded from updating. The 

resulting schema may then be interpreted in PRc, yielding PRv < PRc. To see 

that PRc < PRv all that is required is to show that the actuals may be 

updated. Clearly, if all actuals are functions, they are already treated 

properly.   For each auxiliary function call containing any simple variables 

v «- G(vi,v2,...,vRG) 

substitute 

begin        Wj *- G^v^^v^); 

•   ■   •   i 

WRC   *"   r'RG(vl. -.VRC); 

V  «- G{v1,...,vRC)i 

Vi  ♦- W!; 

m "—   ■■-■■■ —       __-_. 
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VRC •■ WRC  «n^i 

where: 

Wj    are new simple variables 

Gj    are   new   functions   identical   to  G except  that   each   halt statement 

has the i,h formal as argument. 

Note  that the case where the function is an actual (rather than a right hand 

side   of   an   assignment)   is   handled   by   applying   the   procedure   recursively, 

q.e.d. 

Call by copy and call by reference are frequently thought to be two 

different ways of achieving the same effect. However, the previous examples 

show that there is a schema on which these two mecnanisms differ. Call by 

reference formals refer indirectly to the sole instance of the actual while call 

by copy formals use a duplicate of the actual and update it at function 

termination. These two mechanisms are identical as long as different formals 

correspond to different actuals, since the reference discipline guarentees 

access of the single most recently assigned value corresponding to the actual. 

In the example 2.1.10 there were two separate values (corresponding to the 

two instances of u) and hence the difference. Thus, we need only handle 

this case to establish equivalence. 

Theorem 2.2.2: PRc i PRr. 

Proof:   From   \he   preceding   remarKs   we   need   only   consider   the   case   of 

MMH m—mm •■M — ■i 
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multiple  instances  of  a  variable  actual  in  a  single  call.    Si'opose  that  some 

call 

• • • G(^.-,vRG) . . . 

occurs in a statement in schema S and that parameter positions i,j, 

the same simple variable v. 

(i) S < PRc,   To construct an S' ( PRr change each such call to 

begin        Wj «- v; 

.,k are 

. . .   G(v1)...,wj,wi,..)wl[,...,vRG)   . . . 

Vj «- WK   end 

where   the   w's   are   new   variables.     Clearly,   if   G   is   an   actual   to   a 

function   with   some   of   the   same   multiply    occurring   actuals,   G   will 

have   to   be   evaluated,   assigned   to   a   new   variable   and   that   variable 

used as the actual, 

(ii) S ( PRr.   To construct an S' ( PRc change each call to 

•'• •   Gi, ,I((VI.-.VRG)   • • • 

where   G^ (k   is   a   new   procedure   modified   so   that   any   assignments 

to the formals Ui.Uj, . . .,uk corresponding to v, say, 

u^ <-  <term> 

are modified to read 

begin        u, •■ <term> 

Uj   <-   Uji 

matm mmam 
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uk ♦- Uj end 

If in the body of G these formals are also actuals to some auxiliary 

function call then use only one of the formals in all positions and 

follow the call with the required updating of the other formals. 

Obviously, this last requirement may introduce seme new function 

calls with multiply occurnr.g actuals. But, if k is the number of 

auxiliary functions In S and n is the maximum number of parameters 

to any of these then there can be at most k(2n-n) ways of having 

multiply occurring instances of a single variable and hence nsw 

functions introduced. This assures that there are only a finite 

number of different kinds of call? and the construction reduces this 

number by one with each application. Clearly, if there are multiple 

occurring instances of several variables in a call, then the above 

procedures may be applied iteratively, since each application 

removes multiple instp'-.ces of a variable without introducing new 

ones,   q.e.d. 

In   [2]   global   variables   were   introduced   by   modifying   the   definition   of 

<function def> as given in 1.3.   as follows: 

<function def> ::= 

<aux function>[<V -list>]: global <variable>{,<variable>};<body> 

If   variables   w^.^w,,   follow   global   then   they  rtier   to  variables   in  the   mam 

<body>  with  the  same  names  and cannot occur  in the formal  parameter  list. 

mmmm mmmm -'—'- 
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The w^..tHfn are not initialized. A class PRx augmented with globil variables is 

denoted by PR)<q. It was shown in [2] that global variables do not enlarge 

the class of functionals definable by PR. This is also true of the other four 

classes. One can readily see that if {wj^.w,,} is the set of variables 

occurring in any global specification then these may be passed around as 

parameters to all functions using any of the parameter mechanisms, copy, 

reference or name. Renaming of local variables may be required in the case 

where a name is used as a local in one function and specified as global in 

another. Since each mechanism is capable of returning parametric values to 

the earlier environment, the result is assured. For PRn the problem of 

returning values to an earlier environment may be solved by using the 

ronstruction of 2.2.1 and the relevant renaming. From these comments we 

have. 

Theorem 2.2.3: Augmenting the classes PRc, PRr, PRn, and PRj with global 

variables does not enlarge the class of functionals computed over the 

corresponding unaugmented class. 

Although adding global variables does not enlarge the classes defined 

by the various parameter mechanisms, globals are extremely useful in 

reducing the complexity of our constructions. We will use them extensively, 

but our usage may, at times, become a bit imprecise in that we may use 

globals without actually mentioning that the class under consideration has 

been   augmented  with  them.    To  be completely  precise  we should also  prove 

i ii mi am ■     i   ■ -* 
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that a class which has been augmented with markers (introduced below) is 

equivalent to a class augmented with markers and globals. This should be 

obvious and we use this result without further justification. 

Schemata are commonly augmented with a finite set of markers so as 

to provide testing facilities which are not dependent upon the interpretation. 

Given the class M s {Mi,M2,...} of distinguishable markers the following two 

statement forms may be added to the definition of <rec program> given in 

1.3. to provide markers for recursive program schemata: 

<$> ::= <variable> «- m 

| if <variable> = m then [<label>:]<S> else [<label>:]<S> 

where m denotes some marker in ht. The marker values are independent of 

interpretation and their semantics shouM be clear. We adopt the convention 

that if a marker is passed as an argument to a basic function or predicate 

or to a main <body> halt statement, then fl will be used. A class PR)< 

augmented with markers is denoted by PRxfl. 

In [2] markers were shown to add no power to PR i.e. Ppv « PRVH. 

This result is shown by using the locator methods introduced in [4]. The 

same situation arises with PRcn and PRrri, but we need not introduce locators 

since we can reduce these problems to the result PRv = PRvn. 

Throrem 2.2.4: PRc s PRcn) PRr  a PRrn. 

Proof:   It   is   immediate   that   the   constructions   given   earlier   in   this   section 

mmmm mmm. 
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apply without modification to PRcn and PRrn.    Thus for any schema in either of 

these two classes we can construct one equivalent to it in PRvH.   q.e.d. 

The technique to be used when showing that normal evaluation is 

equivalent to call by reference is to effectively implement the definition of 

normal evaluation in a call by reference schema. The normal evaluation 

strategy postpones evaluation of actuals until !he formals are required. A 

call by reference evaluation strategy can be .riade to correspond if one 

establishes a communication mechanism between the calling environment and 

the called function in such a way that the called function can request the 

evaluation of parameters. In particular, the calling environment passes none 

of the actual parameters initially, only iiidiralon that none have been passed. 

When the called function requires a parameter it tests to see if the 

parameter was passed. if it was, the value is used If not, a request 

indicator is set and the called function halts. This indicates to the caller 

which parameter is required. It is evaluated and the function called again 

with this evaluated parameter as an argument. Finally, the calling 

environment .ontinues calling the function as long as it receives requests for 

parameters. If a call ever returns with no request for parameters, the result 

has been computed. 

Throrrm 2.2.5: PRn S PRrn. 

Proof: (PRn < pRrrl) Let S^ <   PRn be a completely labeled schema and let  n be 

the   maximum   number   of   parameters   to   any  auxiliary   function  defined   in   S^ 

M^MMaMMi 
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St!,   . •   -.Sin 

SVi,   . •   -.SVn 

cii. • •   -.Ctn 

CVi,   . • Wn 

Define   for   each  <body>  4n  variables  which  do  not  occur  elsewhere  in  the 

<body>: 

called the savrd indicators 

called the saved values 

called the calling indicators 

called the calling values 

Define   S2  from the following procedure.    For the i,h auxiliary function call  in 

the <body> of the form; 

L: t «- G(<term>1, . . .,<term>RC) 

substitute the statement, 

Li begin 

•! siRG«- n-, 

■; J'VRG «- m 

■j ciRC ♦- m 

•  ■> CVRG •■ svRGi 

t «- G^cij.cvj,     . .,ciRG,cvRG); 

if cij ■ sij then begin si1 *- M; svj «- <term>1; goto Lj end 

else if ci2 ■ si2 then begin si2 *- M; SV2 «- <term>2i goto L| end 

54 *■ 0;   . 

SVi «- f); 

cii *■ fl;   . 

end 

where: 

else it ciRG ' siRG then begin siRG «- M; svRG ♦- <\erm>RC\ goto L, end 

else; 

L, is a label not used elsewhere in the <body> 

■HHMMMMI 
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M is a marker from M and 

G' is a new function correspond;ng to G defined below. 

When every  occurrence of  an auxiliary function assignment has been replaced 

with the above statement, eliminate all instances of 

if cl| « si, then <$>! else <S>2 

by replacing them with 

if ci| = M then 

if li, = M then <S>2 

els« <S>1 

else 

if si, = M then <S>1 

else <S>2 

which   will   restore   the   schema   to   legal   syntactic   form   for   PRrr1.     Next,   for 

each auxiliary function definition, 

G(u1,U2, . . .,uRC)^body> 

such that every statement 

L: <S> of the <body> where S is 

(i) an if statement 

(ii) an assignment statement such that 

(a) there is an occurrence of a formal on the left hand side 

(b) there   is   an   occurrence   of   a   formal   as   a   "first   level"   actual,   i.e. 

Ui is not an actual to an actual. 

such  that   S  has  as  its  first  occurrence of  a formal reference (searching left 

MBMHHMMMMMMBHMM^MMMMHi^M^^^MMM 
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to   right)  the   formal   u,,  then   the   <body>  of   G'  is  defined   by   replacing  all 

stances of such statements by 

L: if uit - M then <S'> 

•'-e begin ui, *• M; haH(n) end 

where   <S'>  is  <S>  with  all  instances of  u, replaced by  uv,.    Clearly, this  last 

construction    is    applied    iferatively    to    formals    of    G    as    long    as    formal 

references remain in <S'>.   The <body> just defined is prefixed with 

G(ui1,uv1, . .  .,uiRG,uvRG): 

where   the   uij   and   uv,   are   new   variables   not   occurring   elsewhere   in   the 

schema   Sj.     The   resulting   schema,  S2,  is  obviously  in  PHrn  and   as   we  now 

show, equivalent to Sj. 

First observe that for every statement in $! there is a corresponding (but 

more complicated) statement in S2. Let l^, • • • be the sequence of labels 

describing the behavior of S], in some interpretation, then S2 describes the 

same behavior in that interpretation until a formal UK of a function G (called 

at the r* statement) is referenced at the s,h statement of S^   At this point, 

si^ = svk = cik = cv,, = uik = UVK = n. 

Since evaluation proceeds left to right, u,, must be the leftmost formal 

occurring in the statement of S^ Thus, the corresponding statement of S2 

tests uik, finds it has value n, assigns it a marker value and halts. In the 

calling <body>, the calling indicator c^ ■ M and the saved indicator sin - 0. 

Thus sik ■ cik, which causes the saved indicator sik to be marked and the 

saved   value   svk   to   be   assigned   the   value   of   <term>k.     Meanwhile,   the 
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interpreter for Sj has discovered that uk has not been referenced before, 

returns to the calling environment, evaluates the corresponding actual 

(<term>k), assigns it to uk. At this point, Sj and S2 have realized the same 

semantics. However, Sj now begins executing G' all over again which implies 

that the statements with indices r to s will be repeated. When the 

reference to the formal uvk is encountered again at statement 2s - r, uik - 

cik = M holds, the test will pass and <S'> will be executed. At this point Sj 

and S2 are n register again and execution proceeds in parallel until the next 

reference. Tha induction may be can led out in a straight forward manner 

for which the following facts are useful; 

(a) Once a variable is assigned a marker, that name is never changed 

back to n until after a call has been completed and the next one is 

about to start. Thus, there can not be a repeated evaluation of an 

actual. 

(b) For each repeated call to G', the parameters are always initialized to 

values of the evaluated actuals and so the behavior of G' must be 

identical up to the reference of the most recently evaluateo formal. 

The reader can fill in the details of the induction. 

(PRrri < PRn) The techniques required to show that PRrn < PRn have already 

been u'^ed in earlier proofs, namely, eliminating markers (Theorem 2.2.4) and 

restoring parameters using repeated calls (Theorem 2.2.1.). These together 

with coercing all formals at the beginning of the execution of a auxiliary 

function   body,  are   sufficient   to   yield  the  result   and  the  details   are   left   to 

mam 
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the reader,   q.e.d. 

The above construction separates the use of the markers from the 

domain objects sufficiently well so that were the data objects to include 

markers, the construction would still be correct.   Thus we have, 

Theorem 2.2.6: PRr„ i PRnt,. 

Proof: Immediate. 

Coro/Zory 2.2.7: PRn s P, 
RnH' 

2.3.    Summary and Discussion. 

The results from the preceding sections may be summarized as follows: 

The rrcursive procedure parameter evaluation mcrhanitr.i* of call hy 

value, call by copy, call hy reference and normal evaluation are 

functionally equivalent in the MRM defined above. Furthermore, 

thexe parameter evaluation mechanhm» are not functionally enhanced 

by addition of global variable* or by addition of a finite »et of 

markers. 

Parameter evaluation postponement cannot be presented as an 

explanation of the apparent difference between call by value and call by 

name. The normal evaluation strategy provides this delaying feature, but no 

more functional are computed. In the next chapter call by name will be 

treated  in  depth  ard  its  other  property, multiple evaluation, will  be  seen to 
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be advantageous. 

The results of this chapter have all been constructive and so we can 

ask how practical are the constructions? For example, is it reasonable to 

consider a direct translation between programs in a language with parameter 

evaluation of type x into a base language with parameter evaluation of type 

y? (By direct translation, we mean mapping parameter evaluation into the 

base language structure without resorting to the use of other data structures 

to form a new "run time environment.") This would not be prudent since the 

efficency degrades considerably in our constructions between PRv and PRc and 

between PRr and PRn as well as for some cases involving global variables. 

However, there might be more efficient constructions, though we conjecture 

that they won't be murh better. Of course, we are interested in how much 

one can compute and not in how long it takes. But the proofs do suggest 

that although these parameter evaluation mechanisms are indistinguishable 

based on the funcionals they compute, there may be complexity arguments 

which can provide a distinction. 

In the comments preceding defmiton 2.1.6, it was observed that call by 

value had oeen shown to be "weaker" than the normal evaluation mechanism. 

This appears to contradict our results showing that these two classes are 

equivalent. However, there is no contradiction when we understand what the 

results actually exhibit. 

■■ 
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In [3] it is reported that for a continuous functional T, the computed 

function Fc using the substitution rule C is no more defined than the least 

fixed point of T. The normal rule computes the least fixed point of T, but 

call by value (the left-most inner-most rule) computes a function strictly less 

defined than the least fixed pomt of T [15]. Presented according to our 

development, a sample functional which is less defined than the least fixed 

point would be given by: 

(x.y): z «- F(xIy)! haH(z) 

F(u,v): if u = 0 then w ♦- 1 else w <- F(u - l,F(u - v,v)); 

htlt(w) 

This   instantiated  schema, when x  =   1   and y   = 0, is undefined if  interpreted 

as   a  call  by  value schema while  the  least  fixed point  function of these  two 

arguments is 1. 

The difficulty, of course, is that call by value "gets stuck" evaluating 

F(u - v,v) when the value is not required for the computation. The normal 

evaluation mechanism avoids this difficulty. Hence, the sense in which call by 

value is "weaker" is that when both methods are applied to the same 

schema, call by value may diverge evaluating unused parameters while the 

normal rule will not. Clearly, call by copy and call by reference are 

"\A eaker" in the same sense, sir.e they would diverge on this same schema. 

But our results indicate that the classes of functionals defined are the same 

for both mechanisms. Hence, there exists a functional which, when 

interpreted  as  call  by value, avoids these unnecessary parameter evaluations. 

 ——'———— -   —   .   . 
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Furthermore, we can construct such a schema. 

An interesting point to note is that our constructions, as presented, 

have the property that for a schema S ( PRn the constructed schema S' t PRv 

is such that l^n/v[S',I] ^ V»ln[S',\] for ail 1 where Vnl,[S,\] is the value of the 

schema S in interp etation I with parameter evaluation method x. This 

suggests that if our results were suitably reformulated, call by value would 

be a fixed point rule for the translated schemata. 

^mm "■—■^ - ■ 
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3.   Call by Name. 

3.1.   The Closs PRi. 

Having learned that the classes of functlonals defined by recursion with 

call by value, call by copy, call by reference and the normal evaluation 

mechanism are all equivalent, we now consider the class of schemata 

employing call by name, PRj. Although one's intuitive feeling is that call by 

name provides more facility than the mechanisms considered earlier, the proof 

methods of the last chapter indicate that apparently substantial differences in 

evaluation strategies can be absorbed into program structure. In this section 

our intuition will be verified as we show that recursion with call by name 

defines a larger class of functional than the other mechanisms do. 

To understand the significance of this result, we must realize that in 

[18] and [4], (call by value) recursion has been shown to be weaker than 

other programming mechanisms: (call by value) recursion with nondeterministic 

control and Pp, respectively. The conclusion was that recursion is weaker 

than these other facilities. But one functional which (call by value) recursion 

cannot compute will be shown (see 3.2.1) to be compilable by recursion with 

call by name. Therefore, the weakness described in [18] and [4] of (call by 

value) recursive functions is not due to limitations of the basic recursive 

mechanism, but rather it is due to the way in which parameters are 

evaluated. 

■■ m« in   iii 
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Knowing that PRj is stronger than the classes considered before, it is 

natural to ask how much stronger it is. In particular, in [4] it is shown that 

the above mentioned classes are universal, (see 1.3 for a discussion of the 

notion of universal.) In the next section we show that PRj augmented with a 

single marker, PRjn) is universal. However, unlike the weaker mechanisms 

where markers can be effectively eliminated, we show that there can be no 

effective way to eliminate the marker of PRjf1 schemata to realize schemata in 

PRj. This does not imply that PRj is not universal, since (as Constable and 

Gries show) nonconstructive means may be used to show equivalence in this 

circumstance. However, whether PRj is univei:al or not is still open and the 

last section discusses the difficUties of answering this question. 

Recall that when the definition of the call by name das', was given in 

2.1.8, we commented that we could justify our decision to ignore the entire 

statement when an erroneous left hand side was encountered. if the 

semantics are prefered of evaluating both sides and then ignoring the results, 

then replace every assignment to a formal x: 

x «- Q( . . . ) 

with the statement 

begin wj «- G( . . . ); W2 «- x; x <- Wj end 

where   Wj   and   W2   are   new   variables.     Clearly,   the   proper   semantics   are 

realized. 

On   the   other   hand,   if   we   had  chosen   the   default   to   be   the  evaluation 

MMMMMH . ^._ . _  . . 
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of both sides instead of ignoring the whole statement, then we could realize 

the same semantics by constructing a new schema as follows. Begin with 

the main <body> and for every function call 

G(<term>1 <term>RG) 

where simple variables are in he parameter positions i,j, . . .,k, substitute a 

new call 

Gj.j, ,i((
<term>1, . . .,<term>RC) 

where Gij,^ is a new auxiliary function such that all assignments to formals 

no» in positions i,j, . . .^ are deleted. Using the fact that formals in 

positions i,j, . . ..k correspond to identifiers, modify all calls in G(ij) ()( similarly. 

Using reasoning analogous to that of 2.2.2, the construction must terminate 

and the resulting schema must have the semantics of ignoring any statement 

in which an assignment is made to an illegal left hand side. Hence, it makes 

no difference which interpretation we employ. 

3.2.   The Strength of PRJ. 

To show that call by name is stronger than the mechanisms discussed 

previously, we will exhibit a functional which can be defined by a PRJ schema 

but for which there exists no schema in, say, PRv capable of specifying that 

functional. The functional was first describee bj Paterson and Hewitt [18] 

and has since become known as the "leaftest" functional [21 It can be 

stated as follows: 
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leaftest[p,r,l](x) ■   'u(x) if there exists   u ( {r,l}* 

such that p{u(x)) e true, 

diverge    otherwise, 

where r and I are basic functions and p is   a basic predicate. 

In words, leafiest requires a search for a domain element satisfying some 

predicate where the domain may be thought of as a binary tree. Hence, if 

x is a domain element (node) then l(x) and r(x) are domain elements (left 

descendent and right descendent, respectively.) 

In [18] it is shown that there is no schema in R (recursive equations, 

a la LISP) which can implement this functional. The reader should consult 

the proof in [18] for all of the details, but, intuitively, the "failure" of the 

recursive equations is that they can scan only a bounded number of nodes 

on any given ply and an interpretation may be found for which some nodes 

do not get tested. This result is rele/ant, since in [4] it was shown that R 

is equivalent to PRV. 

Theorem 3.2.1: PRv < PRj. 

Proof:   That   PRj   contains   PRv   is   immediate   since   all   of   the   formals   can   be 

coerced   to   locals   at   the  beginning  of  each  function  in  the  schemata of  PRv. 

These   locals   may   then   be   used   in   lieu   of   the   formals   and   t^e   resulting 

schemata,  interpreted  in  P^,  are  in  keeping  with  the definition of  the call  by 

value evaluation mechanism. 

It   is   now   sufficient   to   give   a  schema   S   in  PRj  which  specifies  the  leafiest 

MM "- -    ■ 
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functional.     The   following   is   such   a   schema;   it   performs   a   left   to   right 

breadth first search of the binary domain.    Note that the function calls never 

return  unless  a  "true" node is found.    The labels LI  through L4 are included 

only to facilitate subsequent discussion. 

(x): tail ♦- n; u ♦- leaftest{x,base); h«lt(u) 

leaftest(node,head): global tail; 

if p(node) then halt(node) else 

begin 

LI:      tail ♦■ l(node); 

L2:      nextnode ♦- head; 

L3:     tail *- r(node)i 

L4:      loc «- head; 

temp <- leaftest(nextnodelqueue(loc,head)); 

hilt(temp)  end 

queuedoc.pred): temp «- loc; 

loc *- pred; 

halt(temp) 

base: global tail; 

halt(tail) 

To   understand  the   construction, we  number  the  nodes  of  the  binary  domain 

as follows: 

t^jm M 
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Ilxv4 

x'P 

lx(2) rxC3j 

rlx^      lrx(Gi rrxl^ 

The initial call provides the element x and the function hnsr -••; actuals. The 

reader can follow the execution of the base step. Foi the induction step, 

consider the n,h call (n - l5' recursive call) of leaftest. The formal node 

will correspond to the n,h node in the tree and head will correspond to n-1 

nested calls of the function queue, 

queue(lnr,queue{loc,queHe{ . . iqueueilorjwse)) . . . ))) 

If the n1h node is not the node ot interest (i.e. p(nocie) s false) then the 

variable tail is assigned the left descendant of the n,h node in statement LI. 

At L2 the mnemonic significance of the symbols becomes clear. The formal 

head corresponding to the nested calls of queue is evaluate 1 In the 

evaluation of the outer-most call of queue, the local is temporarily saved and 

the next inner-most call of queue is evaluated, etc. Finally, base is 

evaluated in the most deeply nested environment, hnse returns the value of 

jni7 to the most deeply nested instance of queue, which stores it and returns 

its previously stored value, etc. Finally, the outer-most instance of queue 

receives the value saved by the next outer-most instance of queue, queue 

returns its stored value as the value of head which, ac, we see momentarily, 

is   node   n+1   and   it   is  assigned  to the  nexinnde  local  of  leaftest  for  testing 

m** mm—m*^timm *««i«,__ 
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on the subsequent call. Thus, our untested values are imbedded in the 

parameters with a queue-like discipline. 

In L3 the right descendent is prepared for substitution into the parameter 

list and U makes the substitution and receives the head (node n+2 this time) 

in the manner just described. This is saved in the local allocated in this 

environment and the entire operation applied to the n+l8' node. Evidently, 

the descendents of every node tested are generated in the order of our 

numbering (L1,L3), saved (L2,L4), and each call tests one saved node,   q.e.d. 

Although the queue type mnemonics have been used only to aid our 

exposition, the schema S of 3.2.1 does exhibit the way in which queues may 

be constructively imbedded into PRi schemata. Brown [1] has studied 

queue-like data structures and indep' ndently observed that a queue could 

compute the leaftest functional. Of course, we are restricting our study to 

parameter evaluation, but the following result is worth mentioning so as to 

correlate our work with [1].   The proof requires the methods just exhibited. 

/Ittertion 3.2.2: The class PRj computes all of the functionais computed by a 

class P augmented with an arbitrary number of first-in first-out queues with 

no "queue empty?" test available. 

It is not known whether these two classes are equivalent. 

■MMKWM^MM^. ■ '■■  ■ 



1     ' "■ 

47 

3.3.   Universality of PRjn. 

The call by name parameter evaluation mechanism is stronger than the 

other mechanisms considered thus far. However, before considering how 

much stronger PRj is, we must analyze this class augmented with markers 

^Rjfl)- This class will be shown to be universal by constructing, for every 

schema in P(n>1), an equivalent schema in PRjt1, e.g. P^D is the class of 

program schemata augmented v.ith two push-down stores and a single marker. 

There is no "pds empty?" test available for push down stores in the class 

P(n)1) and pop\PD,z) leaves z unchanged when the pds PD is empty. For 

n  >   1, P(nil) is known [4] to be universal*. 

The technique to be used to show »iiat P(n(1) < PRjri is analogous to the 

construction used in 3.2.1 except that we will imbed a pushdown stack in the 

parameter instead of a queue. Before actually presenting the construction, 

we   show   a   sample   translation  of   a  schema  Sj  (   P(i p   into  a schema  $2  < 

PRjqH- 

Example: (x):      Ll;yM(x); 

L2: pusWP^y); 

L3: pop(PD,z); 

L4: if p(x) then L5: hslttz) else L6: goto LI; 

*   p(l(8)   £   pRv   's   a,G0   shown  in  [4].    See   also   [2]  for   additional   results 
regarding push down stores. 

mmm ■M 
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Schema Sl (  Pa D-    The schema has been completely  labeled for comparison 

to schema S2 < PRjqn: 

(x):    ident «- 0; y <- 0; z «- fi; t ♦- LKnull); hilt(t) 

Ll(pds): global x.y; y ♦- f(x); t •■ L2(pds)i haltit) 

L2(pds): {lobil y; save *■ yi act ♦- M; t »- L3(stacMpds,act,save))i hilt(t) 

L3(pds): globil ident.z; ident «- z; z «- pds; t *- L4{pds); halt(t) 

L4(pds): global x; if p(x) then t *- L5(pd ) else t <- L6(pds); haltit) 

L5(pds): global z; halt(z) 

L6(pds): t «- Ll(pds);hilt(f) 

stack(p,a,s):   if a - M then begin a <- 0; htlt<s) end 

else begin t *- p; hilt(t) end 

null: global ident; halt(ident) 

The statements of the original schema have been translated into 

separate functions with each one responsible for performing the activity of 

its correspondent as well as calling the next sequential statement function. 

No function returns until all computation has been completed. (L5 is first to 

halt in the example). In functions corres<-.-nding to push statements, a pair of 

local variables, «aw and act, is allocated, »avc retains the value of the pds 

element while act is set to the marker value to indicate that the value has 

not been used. A value is retrieved (popped) by invoking the pds formal 

parameter (e.g. L3 above). This forces control to return to the environment 

which    most    recently    performed    a   push   operation.      The   function    «lock. 

■  -   1  
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executed in that environment, tests to see if the value in nave has been 

used. If not, the value is returned and the marker is set. If so, then the 

formal pd* is again invoked causing a return to the next earlier push 

environment. If the pds is empty the function null will eventually be 

executed. It returns the value which will result in a null operation. Note 

that the use of the marker is such that no confusion can result if pds 

elements are also markers. 

We   now   give   the   construction   just   illustrated.     We require   that   each 

syntactic statement in the schema Sj in P(M, be labeled. If L, is a statement 

then the mcccnsor(s) is the statement{s) which follows in the sequential 

control flow.   Clearly, ifs have two, halts have none. 

Co.M«ruc.io« 3.3.1: Let S, be a schema in P(npl) such that each syntactic 

^atement has been labeled. The following steps are required to construct a 

schema S2 in PR^ which is equivalent to S]. 

(i) Let Lj be a labeled statement other than a push or pop: 

L^ <S> 

Then an n parameter recursive U   ction is defined as follows: 

L/pds^ . . .,pdsn): global Wi.wj, . . .,wr; 

<S>; t v L/pdSj, . . ..pds,,); 

halt(t) 

where: Wj, . . .,wr are the variables used in <S> 

Lj is the successor to Lj 

-  
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t is simple (local) variable not used in <S>. 

Actually, we have given only the schematic form for the assignment 

expression. Since the begins may be ignored (given that the successor 

has been chosen properly) and we have given examples of the 

auxiliary functions corresponding to the other statement forms above, 

we leave it to the reader to construct the functions in the case the 

statements are other than assign,.-snt, push or pop. 

(ii) For each push statement of the pds PDk: 

L,: pusKPD^v) 

define a function 

L^pdSj, . . .,pdsn): global v; act «- M; save «- v; 

f ♦- LJ(pds1,...,stack(pdsk,act,save),...,pdsn); 

hilt(t) 

where: t, act and save are new local variables 

M is a marker in M (see 2.2) 

Lj is the successor to Lj, 

(iii) For each pop statement of the form: 

L,: pop(PDl((z); 

define a function 

L/pdSi, . . .,pdsn): global ident.z; ident <- z; z <- pdskj 

t^-L/pds!, . . .,pdsn); halt(t) 

where: 

ident   is   a   new   identifier,   the   same   one   to   be   used   for   all 
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pop   statemems.     idnn   is   the   value   returned   by   the   function   null   to 

guarentee that pop of an empty stack results in the identity operation, 

(iv) Define (he two following auxiliary functions: 

stack(p,a,s): if a = M then begin a <- fl; halt(s) end 

else begin t <- p; halt(t) end 

(v>   Construct   a   schema   S2   in   PRjgn   using   the   following   main   program 

augmented with the functions defined in (i)-(iv) above.: 

(vj, . . .,vt): ident «- 0; Uj «- 0;   . . .; us *■ t); 

t ♦- L^null, . . ..nu,!); halt(t) 

where: Vj, . . .,vt are the input variables of Sj 

Uj, . . .,us     are     the    simple    variables    used    in    Sj,    (since, 

precisely     speaking,    global-,    must    be    defined    in    the    main 

program.) 

ident is the identifier introduced in (iii) above 

Li is the first statement of Sj 

and t is a new simple variable. 

Thus recursive functions augmented with a single marker and employing 

call by name parameter evaluation can simulate any number of push-down 

stores. The universal class PflL [4] is capable of simulating recursive 

functions using the stack model of Dijkstra. This method, used for ALGOL 

compilers, has been adequately described in the literature [19] and need not 

concern use here. All that is required in our later proofs is that Pp« is 

effectively equivalent to Pnri.   These comments may be summarized as: 

mmmm —■ —^.^  
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Theorem 3.3.2: For n > 1, Ppj,, • P(n j,. 

3.4.    Necessity of Noneffective Marker Elimination for PR^. 

In this section we establish that if markers cannot be effectively 

removed from schemata of PR« to yield schemata in PRj. The method used is 

essentially the one used by Constable and Gries[4] to show that Pp is not 

effectively universal. We require the following definition in order to show 

that PRj cannot be constructively equivalent to the universal class PR^. 

Definition 3.4.1 [4J Let S be a completely labeled schema with n predicates. 

Then the he.havior of S is the sequence of statement labels of S in the 

order they begin exLruting. For any list v of length n chosen from 

{true.false}, the t)-au»oiiomou.t behavior of S is the behavior defined by S 

assuming that for 1 < i < n the truth value of predicate p, is V| for all 

values of its arguments. Clearly, any schema defines at most 2n different 

v-autonomous behaviors. 

In [4] it was shown that the v-autonomous behavior of Ppn is 

independent of the interpretaton of the domain, the input variables and the 

function symbols. It is also shown that it is undecidable whether tut 

v-autonomous behavior of Ppn is finite or not (see 4.2.3 for a similar 

argument). Clearly, any class effectively equivalent to Ppn must also have 

these   two   properties.     From   the   last   section   we   know   that   for   n   >   1 
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pRjH E p(n,l)  's constructive and from [4] we know that for n > 1, P(n|i) ■ Ppn 

is constructive.   Thus: 

l,rmma   3.4.2:   It   is   undecidable   whether   the   v-autonomous   behavior   of   a 

schema S < Ppjn is finite or not. 

However, we shall show that it is possible to determine whether the 

v-autonomous behavior of a schema S < PRJ is finite. 

famma 3.4.3: Let S be a schema in PRj then it i; decidable whether or not 

the v-autonomous behavior of S is finite. 

Note that contrary to the usual case with constant predicates, it is possible 

for schemata in PRj to execute the same statement twice without entering a 

loop. However, it is only possible if the statement is a function which is 

used as an actual parameter and whose evaluation is required for two 

different instances of a formal parameter. 

Proof: There are two ways in which the v-autonomous behavior of S can be 

infinite: a cycle within one <body> or an infinitely regressive sequence of 

auxiliary function calls. Cycles of the first type can be determined by 

analyzing the control flow of each <body> using the values Vj whenever the 

predicate P| is encountered and ignoring all function calls. If any instruction 

in  a <body> is repeated, a cycle exists and if the main <body> is cyclic then 
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the v-autonomous behavior is necessarily infinite. 

Suppose the main <body> is noncyclic and rewrite the schema with all cyclic 

bodies deleted and all unreferenced instructions deleted from noncyclic 

<body>s. From the remaining schema, construct a context free grammar G 

with sentence symbol S as follows. First assign a unique number to each 

function call in the schema. Define the nonterminals to be new symbols 

Vn ■ {S, Fj, . . ., Fr, üy . . ., Ug} where r is the number of function calls 

and s «= kr if k is the maximum number of ormals to any auxiliary function. 

The terminals are defined to be V, = {all symbols in the schema). Generate 

the productions P as follows.    If 

G,(<term>ll . . .,<term>RG) 

is  the  i,h  auxiliary function call of the schema, replace it with th« symbol F, 

and generate productions: 

F,-»/8 

UJ! -» <term>i 

UiRG ■♦ <te''m>RC 

where   ß   is   the  <body>   of   G  with  all   auxiliary   function  calls   replaced  with 

nonterminals  and with all occurrences of the j,h formal replaced with U|j.    (If 

the   <body>  is  null  because  it  was found to be cyclic, set  ß  = F,.) Add the 

production 

where ß is the main «toody^ with all function calls replaced with nonterminals. 

-'- ■■ ....--■ . - 
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L(G) defines a simple (Ontext free language such that if L(G) is empty the 

v-autonomous behavior of S is inifinite and if L(G) is finite then the 

v-autonomous behavior is finite. (The language cannot be infinite since each 

nonterminal has at most one right hand side in the production set.) Emptiness 

is decidable by well known methods [10] and is, indeed, a trivial matter for 

these grammars,   q.e.d. 

Throrrm 3A4: There cannot  exist an effective procedure which finds for any 

Si <  PRJH a corresponding S2 < PRJ such that Sj s S^ 

Proof: Apply lemmas 3.4.2 and 3.4.3.   q.e.d. 

Our problem of exactly locating the position of the PRJ class has been 

made a bit more difficult since now we must use nonconstructive methods. 

3.5.    Discussion. 

The question of whether or not PRj is universal is still open. We know 

that it is "close" to being universal since the addition of a single marker is 

sufficient to make it universal. However, there can be no effective 

procedure for translating all schemata of PRjn into equivalent schemata in PRj. 

This phenomenon, of having a class "nearly" universal but not knowing if it 

is, has been encountered by other investigators. Brown, Gries and Szymanski 

[2] have the same problem with 

—~——  :——   — 
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P(2b,0) and Brown [1] has a similar difficulty with Pq*. These problems are 

closely related to the PRj problem, e.g. if Pq was known to be universal, 

then methods used earlier in this chapter (3.2) would permit simulation of the 

queues. 

The nonconstructive technique used by Constable and Gries in [4] to 

show that Pp is universal could also t used for PRj if it were possible to 

enumerate the Herbrand Universe. (See [4] for a description of how the 

Herbrand Universe is used.) In particular, if Uj, . . ..Up and f^ . . .,ff are, 

respectively, the input variables and basic function names of S ( PR*, we 

wish to construct a T ( PRj which performs an enumeration of all strings e, 

where 

e < {Ui, . . .,ur} or e * f.tej, . . .,eR<) 1 < i < s 

If this were possible, we could »how thn cximpuro of a schema S' < PRj such 

that S s S'. The "difficulty" with finding such a schema T is in organizing 

the Dreadth first search so that all terms are treated uniformly and all terms 

are included. They must be treated uniformly since there are no markers or 

counters available to impose a substructure on the previously generated 

values. Clear /, for monadic functions and predicates, the leaftest functional 

(of 3.2) is a i adequate strategy. But it does not seem '.o generalize to 

polyadic functions. Several other candidate organizations have been found 

for   T,  but  the  proof  that  any of  these is correct  requires number  theoretic 

* P(2b,0) is the class P augmented with 2 push-down stores (with "pds 
empty?" tests) and no markers. Pq is the class P augmented with queues, 
for which no "queue empty?" test is available. 

HiilIHMMIMMwaMMHHMMia^aMl, 
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results which are themselves open problems. If this is the wrong conjecture 

and there is actually no way to do this enumeration, then judging from the 

diversity of the candidate organizations available, proving that none of them 

works will be difficutt indeed. 

Finally, note that there is a possibility that PRj could be shown to be 

universal by constructive means. Specifically, our results do not deny the 

possible existence of a translation from each schema S ( Pp to an equivalent 

schema in PRj, since the v-öutonomous behavior problem is decidable for both 

classes. The difficulty in actually doing such a translation is in simulating the 

storing of indices. In the next chapter we investigate PR,,, a pjneralization of 

the call by name class. We will present a construction for translating 

schemata in PRq into schemata in Pp. The problems of storing indices will be 

made clear there. 

mmm ■MMMM-. 
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4.   Parameter Evaluation Extensions 

4.1.    The Constituent Parts of Parameter Evaluation. 

In this section we ahstract the notion of parameter binding so as to 

understand what operations are required to make the actual - formal 

correspondence and to understand the consequences of choosing a particular 

way of implementing these operations. This development will then suggest 

ways of generalizing and extending the mechanisms considered earlier. In 

subsequent sections we investigate the classes defined by these generalized 

mechanisms. 

We develop our model from the following point of view. Suppose we 

are given an interpreter for the basic class B of recursive program schemata 

(see 1.3). Such an interpreter defines all of the mechanism required to 

interpret a schema in L(G) except for parameter evaluation. In our 

development we will establish what operations are required for the 

interpreter to evaluate parameters using a specific strategy. In es;ence we 

will parnmetfirizc the basic interpreter so that when it is instantiated with 

the proper functions, it defines an interpreter for a certain parameter 

evaluation mechanism. Our task is to abstract the constituent parts of 

parameter evaluation (i.e. to define the formals to our interpreter). We also 

present the functions for these parts (actuals) which realize the various 

evoluation mechansims discussed thus far. 

MMM^B_M ,,__—__ mmim. - ..— ...-^-  
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At this point we could introduce an abstract interpreter for our basic 

class of schemata, defined in some language (e.g. Vienna Definition 

Language). However, such mechanism is not required since the greater part 

of such an interpreter doesn't concern us and the points at which our 

constructions must interface with the rest of the interpreter are few and 

simply described. 

The interpreter manipuiak'S several lypct of objects, e.g. domain 

values, identifiers, etc. We will use a simple list-like notation to denote the 

types of objects of interest to us. Let a pair <A)B> denote any object 

whose left hand side value is an object of type A and whose right hand 

side value is an object of type B. The particular objects of the basic 

interpreter in which we are interested are 

<L>D>, < ,Dn i D>l < ,E>. 

The first pair denotes an object corresponding to a variable, i.e. its left 

hand value is of type location (L) and its right hand value is of type D 

where D is thn domain of interpretation. Basic functions with rank n are 

denoted by the second term, (there is no left hand value since they cannot 

be assigned to). The third term represents unevaluated expressions, i.e. 

auxiliary function calls. Ther'j are other kinds of objects used by the 

interpreter, (e.g. predicates) but they cannot be parameters to functions. 

The objects denoted above are the only objects which may be used as 

actual parameters and thus they are the only ones of interest to us. 
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In parameter binding we are interested in environment formation. 

Environments provide the correspondence between the syntactic objects and 

the computational objects which they denote. Thus, an environment, />, is a 

mapping 

p-.ld -t Dn 

where   Dn   is   the   class   of   denoted   objec's.     We   have   no   interest   in   the 

particular   denoted   objects,   only   the   types   of   the  denoted  objects,   so   we 

write 

Dn - {<L,D>, < ,Dn i D>, < ,E>) 

to indicate the types of denoted objects of an environment. 

Environments change when a function is called and so we suppose that 

there is a binding functional ß in the interpreter which defines a new 

environment from the current one. ß defines environments inductively and to 

keep these separate, we. index them. Thus, the denoted types in the 

environment of the main <body> are 

Dne = {<L,D>, < .D" -. D>, < ,E>}. 

When   a   function   is  called  from  the  zero  environment, the  binding  functional 

associates   the  actual  parameters with the formal names.    Thus, the objects of 

the first environment are, 

Dnj = {<L,D>, < ,Dn ■» D>, < ,E>, <L,<L,D», <L,< ,Dn -» D>> <L,< ,E»} 

where   the   first   three   terms   are   the   types   of   objects   specifyable   in   any 

environment.     The  formals  are  given  in  the  last  three  terms  indicating  that 

formals   have   left   hand  values  of  type  location  and  right  hand  values  which 

■I 
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are of actual object type of the zero environment.    Recursive application will, 

clearly, define denoted objects'of larger and larger type. 

The binding function only assigns a name to the object which was the 

actual parameter. We would not have been calling this "parameter 

evaluation" all this time if parameters weren't being pvaluaird as well as 

being assigned a name. But evaluation is a poor word since we wish to 

treat cases where no evaluation takes place. Hence, we hypothesize a 

translation function, T, as one of the parametric inputs to our interpreter. 

The translation function is used by the binding functional to translate 

actual objects into values of formal type. The translation function T has as 

arguments the actual and the name of the calling envrionment. Thus, the 

denoted objects in environment i are defined, recursively, 

Dn8 = K.D-, < ,Dn ^ D>, < ,E>} 

On, - Dn8 U {<L, T(x,i - 1) | for all x ( Dn,.!} 

which   states   that   the   types   of   the   objects   in   environment   i   are   those 

objects    srecifyable    in    any    environment    (Dne)   together    with    the    newly 

introduced   formal   objects   and   these   correspond   to   the   translated   actual 

objects of the earlier environment bound to a object of type location. 

To see how T works, consider the translation function for call by value 

or call by copy.   For the call by value mfchanism, 

Tv(x,i) s fival(x,/>,) 

where  cval  is  the expression evaluation  mechanism of  the  interpreter  and /)j 

mmm kJM.        ,.._ 
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is the I« environment. This simply requires that the binding functional 

evaluate the actual in the calling environment, and thus Tv maps the actuals 

into domain elements D. Any formal defined by Tv k of type <L,D> and thus 

we have 

Dn3 ■ Dn, for all i 

in  the  case  of  call by value.    Clearly, call by copy has the same translation 

function as call by value; hence Tc s TV. 

For the other mechansims, the translation function is a bit more 

complex. For example, one way to describe tiie translation function for call 

by reference is, 

Tr(x,i) • if x «« variable then <L>«'jjn/(x,/9l)> else x. 

The   surrogate   variable  of  our  definition (2.1.4) is  represented  by   an  object 

of   type   L.     If  one  used  this  translation  function for  call  by  reference, the 

denoted objects would be of types 

Dn8 U {<L,<L,D», <L,<L,<LID»>, <L,<L,<L,<L,D»», . . . } 

and any formal of environment n would have up to n levels of reference 

values. If this were the definition, the obvious implementation would be 

quite convenient on a machine with repeated indirect addressing, since such 

operands correspond exactly to the objects in the above set (on a machine 

with an infinite memory). But our definition in 2.1,4(i)c required that if the 

actual is itself a formal, the. the reference value is to be passed. We can 

incorporate this requirement with the following translation function: 

TP'(x,i) B If x « formal then Tr(x,i) else rrfr(x). 



63 

Clearly, the denoted object types for call by reference become: 

Dne - {<L,D>, < ,Dn -» D>( < ,E>} 

Cn, - Dne U {<L,<L,D»} for i > 1. 

The     translation    function    for     normal    evaluation    and    call    by    name 

evaluation are given by; 

Tn(x(i) B <x,/)j> 

T/x.i) s <x,i> 

which indicates that the translation function need not perform any 

modification, but needs only to jind the actual with an environment (for 

normal evaluation) and to bind the actual with an environment name (for call 

by name evaluation.) These definitions for Tn and Tj correspond to those of 

2.1.6 and 2.1.8, respectively. Since our notation provides a method for 

referring to specific environments, we are not required to specify the 

arbitrarily deeply nested types. This observation simplifies our subsequent 

description, and thus we define the equivalent Tn' and T.' as follows: 

Tn'(x,i) s if x « formal then <x,/)1> else rrfr(x) 

Tj'(x,i) 5 if x x formal then <x,i> else rrfr(x). 

The   point   to   note   about   the   translation  functions  Tr,  Tn  and   Tu  is  that 

they   did   an   incomplete   job   of   translation   in   the   sense   that   when   the 

translation   was   made   the   resulting   denoted   objects   were   of   different   type 

than the usuai local objects.    That is, 

Dne « Dni for i > 0. 

mm 
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when ß depends on any of the translation functions presented for call by 

reference, call by name or normal evaluation. Since formals may appear 

wherever locals can, we must further state, when specifying a parameter 

evaluation mechanism, how values may be found which are acceptable as local 

objects. 

We find, therefore, that we must further parameterize our basic 

interpreter with definitions for two other operations, /, to find left hand 

v«! les for formals and K to find right hand values for formals. The simple 

case is when the mechansim of evaluation is call by value or call be copy, 

since the translation functions Tv and Tc mapped actuals into objects the 

interpreter could already handle, i.e. Dne = Dn, The types of the formal 

variables are the same as the local variable type, <L,D> Thus, the same 

reference mechanism may be used for formals which is used for locals. We 

then have, for a formal symbol x interpreted in environment /), 

/->,/)) a /(c(x,/)) ! /.(x,/)) B rnr(/)(x)) 

Kv(x,/!)) 5 «..(x,/)) 5 K(x,/») s r<fr(/>(x)). 

where   /.   and   f?   are   the   reference   mechanism  for  locals  which   are   already 

specified for the basic interpreter. 

The   interesting   cases   are   when   Dn8   *   Dn,   for   i   >   0.     For   call   by 

reference, the  translation function Tr  assigns formals values of type <L,<L,D» 

and so for a formal x in environment p, the reference functions become: 

/-(x,/)) E rar(rrfr(/>(x))) 

— — 
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«>,/)) - cdr{cdr(f>M)) 

which reference the reference value and coerced value, respectively. 

For normal evaluation formals defined by Tn' are of type <L,<a,/)j» 

where n is the unevaluated actual and /), is the environment of the call. For 

normal evaluation of a formal x defined by Tn' in environment /» the reference 

functions are given by: 

/,n(x,/3) E if cdripM) ( D then rntipM) 

else begin 

rvnKr.nrirdripMVfdricdripi*)))); 

halt(ror(/)(v))) end 

Kn(x(/)) = if r.dr{pM) ( D then rdr(pM) 

else rval(cnr{cdr{fiM)),rdr(cdr{p{)()))) 

To see that these are consistent with 2.1.6, observe that c.dr(pM) i D is 

true if -«nd only if the formal has been assigned to in the <body> of the 

call. If it has not been, then it must be evaluated before it is assigned to 

(according to 2.1.6), and thus, the else consequent of l.n. If the right hand 

side is required, then if the formal has been assigned to then we produce 

that value. If it has not been assigned to we evaluate it each time it is 

referenced. This is not a contradiction of our definition of 2.1.6 since in our 

formalism, the environment pi is passed along and there can be no side 

effect?.    Thus, the first evaluation is indistinguishable from the n,h and we 

- 
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need not concern ourselves with which it is except for efficiency reasons*. 

Finally, the call by name formals defined by T.' are of type <L,<a,i» 

where a is the unevaluated actual and i is the calling environment name. 

The reference function for a formal x in environment p is given by, 

/^(x,/)) i cor(rrtr(r(fr(/5(x))» 

K/x,/)) » ••»'rt/(r«r(r</r(/>(x))),/)cdr(cdr(F,„,,,) 

Note  that  if the  actual does not have a left  hand side, /- will return nothing 

and we suppose the interpreter can handle such cases. 

The only remaining detail is that of copying back of formal values into 

actuals for call by copy. This requires the use of the assignment functional 

Of the interpreter and since there is no particular subtlety, we shall ignore 

it for now. 

Note   that   when  the  left  hand side  reference  function  returns  a  location 

other   than   cntipM)   (i.e.     other   than   the   element   provided  by   the   binding 

functional)   there   will   be   side   ef*ncts   in   some   environment.    Clearly,   if   we 

redefine the reference functions for call by reference to be 

/-r(x,/)) B cnripM) 

Rr{*,p) a if rrfr^x)) ( D then cdripM) 

else rdrirdripM)) 

* Actually, efficiency is the whole reason normal evaluation was introduced in 
[15]. We could easily specify a "once if ever" evaluation strategy by using 
the assignmr;.! functional of the interpreter, but we choose to avoid the 
introduction of this extra mechanism here, since the meaning is the same. 

mm* MM 
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we   produce   an  evaluation  mechanism  which  is  indistinguishable  from  call  by 

value. 

Excepting the detail concerning call by copy then, we can parameterize 

the basic interpreter for a particular eval <tion mechanism x by specifying 

the three components: 

T,, the translation function, 

/,x the left hand side co iversion procedure 

Hx the rght hand side conversion procedure 

The fact that parameter evoiunlion introduced a new type of value implies 

that type conversion procedures /. and K have to be introduced to translate 

between formals and other types. These new procedures provide inlrrobject 

translation. Interobject translation is a consequence of choosing Tx such that 

the resulting denoted objects are not all in Dn0. But not all operations take 

place between formals and other objects. Some operations take place 

between formals and other formals. For example, formals can be assigned to 

formals. Thus, there must also be imraobject translation. If one can pass 

an unevaluated function call or formal, why can't such unevaluated cbjects be 

assigned to formals within a body. Of course, that can be done and many 

authors have considered this problem, e.g. Landin, Reynolds, Scott and 

Stratchey. 

We will not, however, address the issue of adding functions as a value 

type.     In  the  first  place, our  little  model of  environment defintion would  fall 

mmmm 
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apart. Secondly, the problem has been studied before, (see [20] for an 

overview.) Finally, our interest is in classes of functionals and languages as 

introduced by the above authors are so powerful as to surely be universal 

(see next section). 

However, our inability to show that call by name is universal motivates 

us to find a generalization which would suggest what the shortcomings of its 

earlier definition are. The notion of iiurotype conversion is just the 

mechanism. Towards this end, if we observe that parameter passing for call 

by name is the assignment of unevaluafed functions to formal parameter 

identifiers, then we could allow all assignments to formal identifiers to be 

unevaluafed. This is analogous to the quoto operation in LISP, only we will 

apply it only to formals. The restriction to formals is appealing since it 

doesn't   require   any   substantial   modification   of   our   definitions,  as   a  general 

quote operation would.   As we will see in the next section, this is enough. 

4.2 The Class PRq. 

In this section we investigate the call by name extension suggested in 

the last section. The mechanism, which will be entitled call by quote, 

warrants a few preliminary remarks. It is admittedly pathological in the 

sense that although it is a extension of call by name, it probably not a 

viable parameter mechanism for any real language. This is because, when 

call   by   quote   facilities   are   provided,  one   might   as   well   allow   functions   as 

■M—i MI   i mi« i—l mi ■JMIII 
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values throughout the language, i.e. as local Identifier and function values. 

Such a language is too large a step for our interests here. Finally, note 

that the "stack" model which is usually used with call by name no 'rr^er 

applies.* 

Definition 4.2.1: The class PRq of rccumivc! pngrmm schemata with call by 

quote is a call by name class of schemata with the additional semantics that 

ony assignment to a formal is unevaluated. If the formal does not have a 

left hand value, the entire statement is ignored. If a formal must be 

evaluated and its value is a circular sequence of references, the value is fl. 

Example: 

(x): y *- G(x); h«lt(y); 

G(z): w <- f^z); if p^w) then z «- G(w) else; h8lt{w) 

A   sample   schema   whic!i   if   interpreted   in   the   class   PRq   calls   G  exactly 

once from the main <body>.   Compare this to its interpretation in PRj. 

Although   we   do   not   know  if  PRj is universal, if  it  is  not  then the  following 

theorem tel.i us that the generalization in PRq is sufficient for universality. 

Theorem 4.2.2: PRq s Pp. 

Proof:  Appe  aix  I contains the details of  a construction whereby  any schema 

*  This  may  not  be entirely correct  if one can appropriately modify Fischer's 
proof [7], which uses call by value, to handle this case. 

JMM 



r ■■•■"'■"•'I i   1   mm^^~*^m   i"l"l !«ll 

70 

T ( P0 can be effectively translated into m evidently equivalent schema 

r < PRq. Informally, the translation is straight forward once there is a w?y 

to allocate an infinite li-.ear vector and a way to manipulate indices 

(specifically, to store an index.) We allocate the storage essentially as was 

done in sections 3.2 and 3.3 as formals to the recursively called instructions 

ol T. To realize subscripts we use the fact that unevaluated expressions 

can be assigned to formals. Thus we have a zero function and an iniex\{y0 

function. The subscript two would be tatarKfotfe*!(«*•)}. To get an array 

value, control must first return to the earliest environment (i.e. 0 cell of the 

array). Then, the index is coerced, removing one level of nesting per 

environment until the zero function is called. This function transfers the 

value of the local (corresponding to the array cell) to a global temporary 

formal and destroys itself. Thus there is a fetch from the indexed cell. 

Assignment works in the analogous way. 

Of course, schemata in PRq can be simulated by a universal class, say 

PpL. Weisenbaum's paper [23] provides a good presentation of the problems 

involved,   q.e.d. 

With PRq known to be universal, it is reasonable to consider trying to 

find a translation from schemata in PRq into schemata in PRj and thereby 

showing its universality. This is not, however, an advisable strategy as the 

following theorem indicates. 
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Theorom 4.2.3: It is not decidable whether the v-autonomous behavior of PRq 

is finite or not. 

Proof: Given a Turing machine Tm, we can conr-truct a schema T ( PRq which 

simulates the behavior of Tm. The schema in PRq employs no predicates and 

thus operates under constant truth assignments. If T halts then Tm halts on 

blank tapes. Since this property is not decidable, v-autonomous behavior 

cannot be. The construction is quite envolved and is presented in Appendix 

11.   q.e.d. 

Corollary 4.2.4: There cannot exist an effective procedure which finds for 

any schema Sj <   PRq a schema Sj <  PRJ such that Sj s S2- 

Proof: Apply theorem 4.2.° oi.d lemma 3.4.2.   q.e.d. 

Our generBlization was too generous. It may be that adding some 

extra strength to the PRj class will enable one to build a bridge between PRj 

and Pp, but at this point its not clear what such a facility would be. 

—  
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5.   Decisions about Parameter Evaluation. 

5.1.   Motivation. 

The various parameter evaluation mechanisms which we have studied 

represent different solutions to the same semantic problem: binding values of 

one environment to names in another environment. As different solutions, 

they provide differing degrees of convenience at differing costs. For 

example, normal evaluation might require a minimum of execution time for a 

small number of references but the test for "already evaluated?" might incur 

too much overhead for large numbers of paramefe references. On the other 

hanii the advantage of being able to return parameter values with call by 

reference might make it more convenient than normal evaluition. In short, 

convenience of use and cost of implementation and execution are among the 

axes along which parameter evaluation mechanisms vary. 

Convenience is a personal issue and implementation cost is a highly 

machine dependent issue. Therefore, we will not treat either specifically 

Rather, we will provide some facts for use by the language designers and 

implementors which may help them to optimize these (and other) conflicting 

features when choosing a parameter evaluation mechanism. 

In particular, we observe that if one could determine "how a parameter 

is to be used" when compiling a program, one might be able to decide which 

is   the   "cheapest"  mechanism  available  that   provides   the  required  semantics. 

wmmmmmmm 
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For example, in ALGOL the mechanisms of call by value and call by name 

must both be available. Since the compiler writer must provide both 

mechanisms, he might prefer to implement call by name evaluations as call by 

value in cases where it wouldn't make any difference and would be cheaper. 

We propose to investigate to what extent questions of this type can be 

decided and, when they can be, lo give procedures for answering them. 

Armed with this information, we could expect the language designer to 

specify the parameter evaluation mechanism he deems most convenient while 

the implementor provides that facility only when absolutely necessary and 

whenever he can, uses any other mechanum that is cheaper. 

5.2.   Definitions. 

If the reader is familiar with the unsolvability results for in program 

schemata, especially Luckham, Park and Paterson [14] then he will be 

skeptical of our chances of establishing any but negative results about 

optimizations. In this section we present the necessary definitions and then 

justify the reader's feelings. We will not, however, spend a lot of time 

providing negative results, but rather in subsequent sections we try to 

establish decidable, though less complete, optimizations. 

Recall that the syntax of our various classes is given by the grammar 

G (in 1.3.) Let L(G) denote the class of terminal strings of this grammar 

which   we   called   basic   recursive   programming   schemata.     In   addition,  PR)<   is 

kdlü 
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the class of recursive programming schemata with x parameter evaluation and 

Val^SV is the "interpreisr" function for the class PRK evaluating schema S in 

interpretation I. 

Definition 5.2.1: Let Pnx nd PRy be classes of recursive program schemata 

defined on strings of L(G) with parameter evaluation mechanisms x and y, 

respectively. Then the coincidence das* for x and y, Cxy contained in L(G) 

is the class of terminal strings such that 

C.y = {S ( L(G) | l/nMS.l) s |/n/y(S,I) for all I) 

Thus the coincidence das? for y and y contains exactly those schemata 

whose interpretation is insensitive to which method of parameter evaluation, x 

or y, is applied. Since L(G) contains some strings with no parameterized 

auxiliary functions, Cxy is trivially nonempty. On the otherl.and, the 

coincidence class ca , contain many schemata as is seen in the example. 

Example 5.2.2: In section 2.2 we observed that for any schema S, the call by 

copy   interpretation   of S   is   indistinguishable   from   the   call   by   reference 

interpretation   of   S   if all   simple   variables   in  each   auxiliary   function   call 

are  distinct.    All  such -chemata are elements of the coincidence class Ccr 

for copy and reference. 

Of   course,   the   class  Ccr   also  contains  schemata  with  duplicated   actuals 

in those cases where the duplication makes no difference. 
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Let x and y oe parameter evaluation mechanisms, then a paramelrirally 

induced nnmr-valuc dixpnriiy describes the situation when some schema is 

interpreted using the two different mechanisms and the values associated 

with the names become different in the two interpreters as a result of the 

parameter evaluation activity. Specifically, suppose that all the names have 

the same values in the two interpretations at the commencement of one of 

the parameter binding activities (i) auxiliary function initiation, (ii) formal 

parameter evaluation or (ni) auxiliary function termination. If, at the 

completion of this activity, there exists a name whose value differs between 

the two interpretations, then we say the two evaluation methods cause a 

parametrically induced name-value disparity. 

Drfinition 5.2.3:  Two  parameter evaluation mechanisms x  and y are said to be 

MlMlltieclly srfmrnhlr if: 

(i)    there    exists    a    schema    S    and    an    interpretation    I    such    that 

l/n/JS,!]'  l^/y[S,l]. 

(ii)    I'n/JS.l]    '    I'niyl^S,]]   implies   that    there    exists    a   parametrically 

induced name-value disparity. 

The definition requires that for two evaluation methods to be separable 

they must be different and the difference must be manifested at the very 

least by difference in the state vectors of the interpreters caused by 

parameter evaluation. (Of course, we consider the case of a value verses no 

value   (as   one   might   get   with   evaluation   postponement)   as   being   a   value 
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disparity.) Each pair of parameter evaluation methods which we have 

discussed are semantically separable (see Corollary 5.2.5 below for 

justification.) As an example of a semantically inseparable pair, consider 

call-by-value (Ir) and call-by-value (rl). These are both call by value but 

differing only in that the former evaluates actuals left to right and the latter 

evaluates them right to left. 

Theorem 5.2.4: Let x and y be parameter evaluation mechanisms which are 

semantically separable. Then the membership problem for the coin.idence 

class Cxy of x and y is not partially decidable. 

Proof: By virtue of the fact that the parameter evaluation mechanisms are 

semantically separable, a schema S exists for which there is a parametrically 

induced name-value disparity for all interpretations. We may construct for 

any schama R ( L(G) a new schema SR whose value is provided by the name 

whose value diverges according to which method of evaluation is provided. 

Furthermore, the value assigned to the name will be in the one case the 

value of R and in the other case some value different from, but dependent 

upon, R, e.g.   h(R) for some bas^c function h.   Suet, a construction implies 

SR ( cxy <=> R diverges for all interpretations. 

The   theorem   then   follows   from   the   fact   that   the   class   P   of   flowchart 

schemata  is  properly  contained in L(G) and that the  problem of deciding if  a 

schema   R   (   P   diverges   under   all   interpretations   is   not   partially   decidable 

(see 1.3).   q.e.d. 

— —-        
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Cnrnllnry 5.2.5: For any distinct pair of parameter evaluation methods, call by 

value, copy, reference, name and normal evaluation, the memebership problem 

for the coincidence class for the pair is not partially decidable. 

Proof: If two of the methods differ because only one postpones evaluation or 

assigns back into the actual, semantic separability is immediate. This leaves 

only the pair <call by copy, call by reference> and the example in 2.1.10 

provides the required schema for separability,   q.e.d. 

Thus, we cannot do perfectly well at identifying when the facilities of 

a given parameter evaluation mechanism are not fully utilized. The reader 

might feel as though our use of strong equivalence was unfair and that our 

result depends upon a peculiarity of strong equivalence. First of all strong 

equivalence seems quite appropriate when considering techniques to be used 

for compilers, etc. Secondly, we could modify our definitions to a "weaker" 

relation and then employ the very strong results of Luckham, Park and 

Paterson [14] on "reasonable relations". The even stronger results of Itkin 

and Zwienogrodsky [12] could also be used but both methods would be more 

involved and the result would most certainly be the same. The task of 

doing "perfectly well" at optimization is so hopeless as not to be worth such 

effort.   We compromise and try to do "reasonably well" in the next sections. 
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5.3.   Decidability Lemmas. 

In this section we will make a rather strong assumption about our 

schemata and prove several lemmas to be used in the next section. The 

lemmas will enable us to recognize when the full semantics are used of a 

particular parameter evaluation mechanism. Such results will enable 

parameter bindings to be compiled so that the cheapest mechanism is used 

providing the required semantics. 

In [14] Luckham, Park and Paterson introduced the notion of a free 

program schema.   W- will use the same notion for our recursive schemata. 

Definition 5.3.1: A schema S (  PRx is said to be free if every behavior of S 

is an execution behavior. 

Recall (from 3.4.1) that the behavior of a schema is merely the 

sequence of statement labels as they begin execution and a behavior is an 

execution behavior if there is an interpretation which will realize that 

behavior. This is a very strong requirement. Indeed, in [14] it is proved 

that freedom is not a decidable property for program schemata and so it 

cannot be for recursive schemata. 

We begin by proving a simple lemma about free schemata. A property 

is MMMM »O function calls if the decision whether or not a particular 

function environment has the prtperty is affected by the functions it calls. 

Clearly, the property of  halting is sensitive (in the general case) to function 
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calls since to determine .', a function halts one must know if the functions it 

calls halt. 

I.rmmn:   5.3.2:   For   any   free   schema   S   in   PR)<   the   following   properties   are 

decidable: 

whether or not for a formal y of an auxiliary function G 

(1) y appears on the lefthand side u an assignment, 

(2) y is ever referenced, and 

(3) y is not refc renced on at least one path. 

Proof: It is immediate when the property is insensitive to the evaluation 

methods. Suppose the property is sensitive to function calls, (in particular, 

sensitive to the evaluation strategy.) Then, the following outline of a 

procedure should suffice to recognize the presence or absence of the 

properties: 

(a) For an auxiliary function, G, mark the formals with an X, 0 or ? 

depending on whether, from local information, the formal satisfies 

the property, doesn't satisfy it or its "not known" whether it is 

satisfied, respectively. The rot known" case will occur when the 

formal is also an actual to an auxiliary function. 

(b) Choose an auxiliary function at least one of whose formals is 

question marked. Choose a formal, z, and find which auxiliary 

functions it appears in as an actual and in which positions. Decide 

whether   the   properties   hold   in   this   function.     If   nny   of   these   are 
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marked   X,   z   is   marked   X.     If   all   are   marked   0,   z   is   marked   0. 

Otherwise, z remains question marked. 

(c)   Apply   (b)   until   no   question   marks   can   be   removed,   which   must 

occur since new ones are not introduced. 

Parameters   still   marked   with   a  question  mark  evidently  do   not   satisfy   the 

property and should be marked 0, since they form only closed cycles,   q.e.d. 

Whether a formal is eventually assigned to or referenced is not enough 

information. We n ust know whether that assignment or reference has any 

effect. 

lamina 5.3.3: It is decidable for a free schema S ( PR)( whether postponing 

actual parameter evaluation avoids a nonterminating computation. 

Proof: A syntactic check can be made to determine which parameter positions 

are ever filled by auxiliary functions. By lemma 5.3.2 it can be determined 

which of these parameters is ever referenced. For there; that are 

referenced, the auxiliary functions filling their actual parameter postions can 

be examined to determine which diverge, since a free auxiliary function, G, 

containing I statements will diverge in some interpretation if there exists a 

behavior of G containing more than I statements. For the formals 

referencing potentially divergent parameters, divergence of the entire schema 

can be avoided if not all paths through the function reference the formal. 

Mark all paths on which the formal is referenced (assuming use as an actual 

to   an   auxiliary   function  is  not  a reference.) From lemma 5.3.2  the  remaining 
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unmarked paths ran be marked depending on wheth«r evaluation is avoided 

in any of the called functions. If there exists an unmarked path to a hilt 

then postponement will avoid a nonterminating computation,   q.e.d. 

In the following lemma we prove that it is decidable whether or not an 

assignment to a formal changes its value. There is a bit more complexity to 

it than the earlier proofs, and the following definitions will be useful. 

Definition   5.3.4:   A   Jt   -   repealed   hehavior   of   a   schema   S   is   a   behavior 

L1( . . .,Ln such that there are no indicts i0,il(i2, . . .,ik+l such that, 

Lie« • • •.Lji-iiLiii • • •I'-J2-I.    •    •    -»l-iki • • -ILJU+I 

is a substring of Lj, . . .,Ln and 

Lie. • • -.l-ij-i ■ L|i. ■ ■ ■.'-J2-1 ■    .   .   .   ■ Ln . • ■•U+i- 

Thus,  a  k-repeated  behavior  is  one in which no iteration or recursion cycles 

on  the same  path more than k times.    Clearly, for fixed k, any k - repeated 

path through a schema S is finite. 

Definiiion 5.3.5: Let e be any expression in the Herbrand Universe (see 3.5 

for def.) such that e = Uej, . . .,eRf). Then the generation tree for e is the 

oriented tree formed by placing f at the root and the Rf edges from it 

(from    left    to    right)    leading    to    the    generation    trees    for    ej, . . .,eR„ 

respectively. 

Thus,  a  generation  tree  for   any  computed  value  of  a schema  has  basic 

function  symbols  for  nodes  and leaves of t.iher input variables or  ns.    The 
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term cycle in tht following theorem means either an iteration or a recursion 

which returns control to the same label. 

The crucial fact to note regarding recognizing when an assignment is 

always an identity assignment is that if if is then the subcomputations must 

either be constant or the computation of the left and right hand sides must 

take place "in unison." By "in unison" we mean that a subcomputation for 

one cannot take place in one cycle and the corresponding subcomputation in 

a different cycle, for if they did, we could find (in a free schema) different 

numbers of repetitions for the two cycles to contradict the assumption of 

equality. Thus, cycling through a loop (ittrativtly or recursively) must 

always perform subcomputations for both left and right ,->and sides. 

Lemma 5.3.6: For a free schema S in the class ?n„ it is decidable whether 

or not an assignment to a formal y of an auxiliary function G changes the 

value of y. 

Proof: We first prove a major subcase: the problem is decidable where S has 

no identity assignments. Enumer?.e all 2 - repeated paths through S and 

decide whether the assignment in question ever changes the value of y. We 

now show that if for none of the 2-repeated behaviors the value of y is 

changed, then there can be no behavior Lj, . . .,Ln in v liich the value of y 

is changed.   Observe the following facts: 

(1)    Since    there    are    no    identity    assignments,   if    both    sides    of    the 

assignment   in   question   have   a   bounded   length,   then   all   possible   values 
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of the assignment have already been investigated. 

(2) From (1) it follows, that if a behavior Lj, . . .,Ln exists then it v.-st 

have a subcomputation in a cycle the value of which depends on a 

value changed in a cycle. 

(3) Since there are no identity assignments a value changed in one 

repetition of a cycle must either be used by the end of the next 

repetition or never be used. 

Suppose a behavior Lj, . . .,Ln exists and that it is «. shortest such behavio.. 

Tlien there exists a 2-repeated behavior Mj, . . ..Mp of S and an index i 

such that Ln = Mp is the assignment in question and Ln_„ . . .,Ln = 

MP-I. • • -AV Thus, there is a suffix of the 2-repeated behavior which 

corresponds to the suffix of our supposed counter example. We choose 

M^ . . .,Mp so that its suffix is the largest possible. Let ^ and E2 be the 

generation trees of the left and right hand sides of the assignment in 

question. Then since the suffixes match, then the top k ply of E! and E2 

match for some k. Choose two values e! and 62 in the generation trees of 

Ei and E2, respectively, such that ej ■ e2, they fill corresponding parameter 

positions and all nodes on a path to their respective roots match. These 

must exists or else El and E2 are not different. We require that the root 

nodes of ey and e2 differ. By working backwards from Ln through the 

behavior Lj, . . .,Ln, we can find where these two values were computed. 

From (1) we know that these values had to be computed in one or more 

cycles.     In   addition,   we   can   show   that   they  were  computed   in   the   same 
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cycle.   Suppose they were computed in separate cycles, then either, 

(a) one or the other cycle has been repeated and if repeating the cycle 

doesn't change the value we can eliminate a repetition, realize the same 

value and contradict the assumption that L^ . . .,Ln is shortest. 

(b) one cycle has been repeated and repetition yields a different value 

for each iteration. If the repetition is greater than two then we can 

eliminate one or more, realize a different value and contradict the 

assumption that Lj, . . .,Ln is the shortest sequence. 

(c) the cycle has been repeated 0,1, or 2 times with a different value 

each time and thus has been discovered in our 2-repeated behavior 

analysis, contrary to the assumption that none existed. 

Those are the only choices with no identity assignments, so we conclude that 

the two values el and e2 were computed in the sarr.o cycle. But this is 

impossible since if it were true then we have already discovered the 

difference. Since the suffixes match, ej and e2 are operands to the same 

function name f (though maybe not the same instance of the name) then that 

name must be outside the loop or on the next repetition of the same cycle. 

If it is outside the cycle then any exit from the cycle is erroneous, including 

the first. If the instance of f is in the cycle, then the error must be 

discovei'-d in two repetitions through the cycle since with no identity 

assignments values computed on one cycle must be used on the next, or 

never. Thus, two repetitions of the cycle are sufficient to recognize the 

difference  regardless of  where  the occurrences of f are.    Thus the supposed 

■MM 
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difference cannot exist. 

The effect of identity assignments is to act possibly as a delay line 

and to postpone the decision! required for the above argument. In 

particular, for any operand name a change in value can be postponed for a 

maximum of k iterations of a cycle where k is the number of identity 

assignments in a loop. Thus, we merely enumerate all k-repeated behaviors 

where k is the number of assignments in the repeated subbehavior.   q.e.d. 

Lemma 5.3.7: It is decidaole for a free schema S whether or not a change in 

the value of a formal y of any auxiliary function F affects the value of the 

schema. 

Proof: There is a bound on the amount of simulation required to determine if 

any output of an auxiliary function G (or main program) is affected by a 

change of a formal y in F. If there are n variable names (for formals and 

locals) in G then there are 2" possible assignments of values which either 

depend or do not depend upon an actual whose value could be changed by 

the formal y of F. The dependency slate is an n element binary vector, one 

bit corresponding to each variable, describing whether the value of the 

var able could change as a result of the function call (1) or would be 

unaffected (0). Initially, the vector is all zeros. Begin simulating G and set 

the bit corresponding to x if 

(1) x is the actual corresponding to y in a call of F, 

(2) x   is   assigned   a   value   which   is   a  function  of  variables  which   have 
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their bits set, 

(3)  x   is  assigned  two different  values  in each consequent of  a  predicate 

whose parameters include variables which are set. 

The   vector  element corresponding to x  is to be set to zero if x is  assigned 

a   value   which  is   a  function  of  unmarked  variables.    All computations   are  to 

be   simulated   with   a   record   kept   of   the   current   value   of   the   dependency 

state  for  each labeled statement.    When a goto L is encountered, the current 

dependency   state   is  comparFd  with  those  previously  in  effect  when   L  was 

executed  on   this   path.     If  the  current   dependency  state  is in the  list,  then 

no  further  execution of  the  path is  required, since  nothing  new can  happen. 

This   fact   limits   the   length  of   any   path  which   must   be   considered,     gotos 

must   be  executed  if  the  computation  is not finite, and so this process  must 

terminate.     If   all  simulations  lead  to  halt statements whoso argument  x  does 

not   have  its  corresponding  bit  set, then  a change in the formal y  does  not 

affect the result of G.   In all other cases it does,   q.e.d. 

5.4.   Coincidence Class Decidability. 

The    lemmas    from    the    last    section    will    enable    us    to    decide    the 

toincdence da?s problems for free schemata. 

Theorem   5.4.1:   For   free   schemata   the   membership   problem   for   coincidence 

classes Cve, Cvr, Cvn and Cvj is decidable. 

mm mm 
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Proof: Apply lemmas 5.3.6 and 5.3.7 for Cvc and Cvr. Apply lemma 5.3.3 for 

Cvn. For Cvj all three lemmas solve half of the problem. The other half is 

recogni ;ing whether there are side effects when the actual is coerced. If 

there are, multiple evaluations may be required and values of simple variable 

actuals may change. Lemma 5.3.6 recognizes side effects and if there are 

any, one must decide if the formal is evaluated more than once. (This 

requires only a minor modification to 5.3.2 and is left to the reader.) If it is 

repeatedly evaluated and there are side effects then 5.3.7 can be used to 

decide if it makes any difference in the result. This solves the problem for 

Cvj.    q.e.d. 

Theorem 5.4.2. For free schemata the membership problem for concidence 

classes Ccr, Ccn and CCj is decidable. 

Proof: From a syntactic check the duplicate actuals can be found. A 

modification of 5.3.2 will determine i* the corresponding formals ever get 

assigned different values. If they do, lemma 5.3.7 determines if the 

differences affect the result. Membership in Ccn follows from 5.3.3, 5.3.6 and 

5.3.7. For Cci we net d the arguments just given for the Ccr case, lemma 

5.3.3 and the argument from the last theorem regarding side effects,   q.e.d. 

Theorem 5.4.3: For free schemata the membership problem for coincidence 

classes Crn, Crj and Cnj are decidable. 

Proof:  Membership  in Crn follows  from 5.3.3, 5.3.6 and 5.3.7 as well  as  the 

mm 
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comments on side effects. For Crj and Cnj the earlier comments on side 

effects apply together with lemma 5.3.3 for the former and lemmas 5.3.6 and 

5.3.7 for the latter,   q.e.d. 

These results enable us to recognize that the facilities of a parameter 

evaluation mechanism are not fully utilized throughout the entire schema. 

Such a decision procedure, then, would enable a different "run time" 

implementation of parameter passing. Clearly, the usual case would be that 

some evaluations require one mechanism while others could get by on a 

"weaker" mechanism. If this information can be used to perform some 

optimizations, then the proofs of the above results are such that the analysis 

may be applied to these particular cases as well. 

There can be no doubt that freedom is a very restrictive property. It 

has allowed us to recognize when the various mechanisms coincide. The fact 

that the property isn't decidable does not render our results useless since in 

compilers the modus opcrandi frequently assumes that the programs are free. 

If they are, then we know that a compiler can do a good job at translating 

from one parameter evaluation mechanism into another. If the programs are 

not free, then we do a less than perfect job, but we make no mistakes. 
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6.   Summary. 

To   summarize   the   relationships   discovered   in   the   earlier   chapters,   we 

have, 

PRV 
5 PRc ' PRr s PRn '  PR.g s PRKH < PRJ ■ P|J, £ PRJH ■ PR, 

where x = v,c,r,n and the last two classes are universal. We showed that 

PRJ cannot be effectively equivalent to PRjn. We correlated our results with 

the notion of fixed point computation and our proofs suggest that a'though 

call by value, copy and reference do not, in general, compute the least fixed 

point, there is a constructive way to find schemata for which these 

mechanisms do compute the least fixed point. We were able to characterize 

all of our mechanisms in a simple and uniform way. Although tne 

equivalence of two evaluation methods on a particular schema Is generally 

undecidfbie, decision procedures were foun^ for a restricted class. This 

class is consistent with the modux operandi of most compilers and for these, 

parameter evaluation optimizations could be realized. 

Having considered several kinds of evaluation mechanisms, it is 

reasonable to ask how do the facilities compare. Certainly, the conventional 

wisdom has been called into question which says that call by name is 

"stronger" than call by value because it postoones ^valuation. We would 

have to say that the important advantage of call by name ovar the weaker 

mechanisms is that it allows multiple evaluation of the formals with 

(potentially)   different    results   each   time.     This   facility   is   actually   a   very 
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restricted way of manipulating unevaluated functions as objects in the 

language. We saw in PRq that generalizing this facility achieved universality. 

If PRj were universal too, then it would be a far more attractive way (from 

an implementational standpoint) to achieve the computational power than a 

general function manipulating language. 

Even though the weaker mechanisms are equivalent, a look at the 

proofs indicate« that our study of classes of functionals, like other 

computability studies, does not tell the whole story. The efficiency degrades 

tremendously between PRv and PRc and between PRr and PRn. If our 

constructions cannot be made more optimal, then this suggests that there is 

a difference between these classes which we have not had the mechanism to 

recognize. Some complexity analysis might be useful in separating these, 

though its not quite clear how to formulate the questions. Alternatively, one 

could consider a stronger notion of equivalence, where all basic functions and 

predicates must be executed in the same order. 

While we are on the subject of practicality, even if PRj turns out to be 

universal, a "practical man" would be less than excited with the necessarily 

nonconstmtive nature of the equivalence. But pragmatically rpeaking, 

markers are generally available when performing all but the most bizarre 

programming exercises anyway, so PRjf1 may be a more reasonable model of 

our use of call by name recursion. 
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We have left one open problem. The question of whether call by 

name is universal is closely related to opc-n problems of [2] and [1]. 

(Notably, the question of whether p'ogram schemata augmented with two 

push-down stores with empty stack tests is universal.) Finding solutions to 

these, however, is probably best treated as recreational mathematics. We 

will learn very little new when we know the answer. Nor should much time 

be spent adding ones favorite language features to program schemata and 

comparing them to other classes. In the first place most common 

programming language constructs have already been examined and secondly, 

for n language features one can potentially form 2n classes with each 

probably requiring a separate proof. Rather, future research in comparative 

schematology should be applied to finding out which "properties" determine 

the relationships which we've been studying. When we no longer have to 

produce a special proof for each new class we find, then we will have taken 

an important step forward. 
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Appendix 1. 

The   following   construction   completes  the  details  of   Theonim   4.2.2  Note 

that   the   informal   description   given  in  the  text  over-simplified  the  problems. 

In  particular, since  the  noncoercion facility of formal parameter  assignment is 

used so extensively, all data manipulation must be done via formal parameters 

so   that   no   subscript   function  can  inadvertently  become  evaluated.     To  help 

the  reader, the formals s, t  and temp act as globals tnH are used strictly to 

transfer   values.     (Think   of   »   and  i  as  source   and  target,   respectively,  i.e. 

t «- *).     In  addition  when  a  subscripted variable  is to  be  fetched  from, the 

formal   flfctch is  used to  return to the earlier environment  for  the fetch and 

/Imorc   is   used   analogously   for   stores.    As   was   done   in   3.3,   no   auxiliary 

function   corresponding   to   a   statement   of   the   Pfl  schema   returns   until   the 

cumputation  is complete.    Finally, most functions are used »or  manipulation of 

formals and hence their  values do not matter.    As a reminder  to the reader, 

we   always   pass   n   as   a   halt  argument  in these cases  and  make  assignments 

o' -uch function's value to a variable rfumrny. 

A remaining detail concerns the degenerate and erroneous c«es (see 

1.3). In particular, if a subscript value is used as though it were a domain 

value, the value should be taken as ft Conversly, if a domain value is used 

as a subscript, location zero is to be referenced. Note that it can be 

effectively decided how the value is to be used, although it cannot be 

decided  what  type  it  will  be.    We require, therefore, that  two cori^s of all 

  ——-^—^- 
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variables and array locations must be maintained. One will be used to hold 

only valid values for subscripts and another valid values for domain elements. 

They are initialized to the function tnro and the value 0, respectively. Thei 

the fetchs and stores are made with the proper element of each pair as 

dictated by the circumstances of the use. For identity assignments (x ♦- y) 

both terms are copied. Noi«, the construction given below, to ?so\d addinj, 

extra complexity, provides only a single cell for all variables. The reader 

can fill in these details allowing for ill-behaved.schemata. 

Comtruction: Let T be a schema in Pfl. The following outline should provide 

sufficient detail to convince the reader that an equivalent schema in PRq can 

be effectively found. 

(i) Label all instructions of the T schema and determine their successors 

as was done for the construction in 3.3. The constructions for (ii), (iii), 

(iv) below do not actually include all of the cases (e.g. vt *■ Vj), but 

we trust the reader can fill in the details. 

(ii) Let <S> be a statement labeled L| whose successor is Lj and 

envolving the reference of array values A^], A^j], . . ., Afo] and an 

assignment to A[v,]. We define (schematically) an auxiliary function as 

folkws. 

L^s.t.temp^storejAfetch.Vi^, . . .,vn): 

temp ♦■ v,; 

dummy ♦- Afetch; 

 —  i»   tmtvmmm- .■——^-^— 
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Avi «- t; 

•   ■   •   i 

temp «■ v^; 

dur^my «- Afetch; 

Avk «- tj 

s «- Avi; 

temp *- v,j 

dummy «- Astore; 

z ♦- Lj(s,t,Astore,Afetch,v1,v2, . . .,vn); 

MKi) 

where: v^, ■ . .,vn are simple variables in T 

Avi,   Avj, . . .,   Avk   are   new   identifiers   called   orroy   referencing 

identijier* and are used in lieu of subscript expressions. 

<$'> is the statement identical to <S> except with array 

referencing identifiers replacing the array references. The 

riader can make the obvious modifications in the event <S> is 

jn if statement (and has two successors) or in the event it is 

a halt statement (and has no successors.) 

(hi) Let Lj be an assignmem of zero, 

l^AKl^O; 

with   successor   statement   Lj.     Then   form   a   new   auxiliary   function   as 

"    -■-llBl   i i 

■■■■I 
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follows. 

MPlMMa« ■•mi i .■« 

Li(s,t,temp,Astore,Afetch,Vi,V2 vn): 

temp «- v^j 

s «■ zero(s,t,temp); 

c'ummy ♦- Asfore; 

z *- Ljis.f.temp.Astore.Afetch.Vj.v^ . 

halt(z) 

•.vn); 

(iv) Let Lj be an increment statement, i.e. 

with    successor    statement    Lj.      Inen    form    a    new    auxiliary    function 

following the schema: 

L^s.t.temp.Astore.Afetch^i.Vj, . . .,vn): 

local ♦- fij 

dummy *- increment(s,t,temp/vq); 

vp ♦- temp; 

z «- Lj(s,t,temp,storechain(s,t)temp,local(Astore), 

fetchchain(s,t,temp,local,Afetch),v1,V2, 

MKi) 

•.vn); 

(v) Define the following <rec function> and mxilia     functions. 

■Maia»!* 
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(Ui.Uz, . . .,u,): 

source «- fij 

target <- Ci; 

temporary <- f); 

z *■ firstcalKsource^arget.temporary); 

hilt(z) 

firstcall(s,t,temp): 

local ♦■ f); 

z ♦- L^s.t.temp.storencKs.t.temp.locaD.fetchencKs.t.temp.local), 

Vl.Vj, . . .,vn)j 

hilt(z) 

fetchend(s,t,temp,local): 

s «■ local; 

dumnr   ♦- temp; 

hilt(n) 

storend(s,t,femp,local): 

t «- local; 

dummy «- temp; 

local «■ t; 

hllt(O) 

M. 
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fetchchaims^temp.local.pred): 

temp «■ pred; 

s *■ localj 

dummy ♦- temp; 

MKfl) 

storechain(s,t,temp,local,pred): 

temp *- pred; 

t •■ local; 

dummy »■ temp; 

local ♦■ t; 

hilKn) 

zero(s,t,temp): t ♦- 5; ttmp ♦- fi; hilt{n) 

increment(s,t,temp,chain): 

teinp «- indexl(s,t,temp(chain); 

halt(n) 

indexKs.t.temp.chain): temp «- chain; hsfWn) 

where: u^, . . ..u, are the input variables to T. 

vl»v2> ■ • -iVn are '^e simple variables o' T. 

mmm 
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Appendix II. 

The following construction completes the detail? of Theorem 4.2.3. 

Let   Tm   be   a   Turing   machine   over   two  input  symbols   {0,1}  with   a   tape 

one-way infinite to the right     Let Q be the discription quintuples, 

<state,symboi,new5tate,new^ymbol,shift> ( Q. 

We will employ a technique which differs little from that used in Appendix I. 

The only subtlety is In the fact that for that simulation the indefinite 

recursion was done explicitly with each procedure calling its successor(s), 

while for this simulation we must perfoi-m the indefinite recursion by 

executing a formal (or) so that the decis.on to halt can be made. The tape 

will be created, one cell at a lime with local variables. (Whereas in 

Appendix I the local was the storage cell of the defining environment for 

that cell, this construction must pass the cell as the storage for the next 

calling environment. (This is because the tape must be initialized to blank 

where before it was initialized to D.) The tape symbols will be functions, 

hlnnk and mark. These functions will manipulate global formals (zero and 

one, respectively) to decide which is the next state. Writing on the tape 

and movement of the read head are done analogously to that for array 

assignment and index mcremer.ng. The remainder of the details shoud be 

clear. 

Construction.     The   following   steps   will   produce  a  schema  T   (   PRq   with   the 

requirements that if T halts then Tm halts on blank tapes. 
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(i) Let <i,x,j,symbol,shift> be a state quintuple, where i is the s^ate 

number, x the symbol read, ; the new state, tymhol the symbol written 

and nhift the directior, the tape read head is to move. Form an 

auxilary function ixstate according to the following schema, such that: 

(a) 1*  or   2*  is  chosen  depending  on  whether  the  written  symbol   is 

0 or 1, respectively. 

(b) 3*   or   4*   is   chosen   depending   upon  whether   the   head   is   to   be 

shifted right or left, respectively. 

»3rstate(temp,ex,zero,one,read)write,head,symbol,cell): 

local «- fl; 

cell *- blanK(ex,zero)i 

I* symbol «- blank(ex,zero)j 

2* symbol «■ mark(ex,one); 

temp ♦- head; 

dummy ♦■ write; 

3* head *■ shift(temp,ex,symbol,head); 

A* begin 

temp •■ head; 

dummy <- temp; 

head <- temp    end 

zero •■ /Ostate(temp,ex,zero,one,taperead(t&mp,ex,zero,one,cell, 

symbol,read), tapewrite(temp,ex,cell,symbol,write), 

—"  mm ^MMMMMH 
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head,symbol,local); 

one «- jlstate<temp,exlzerolone,taperead(temp,ex,zero,one)cell, 

3ymbol,read),tapewrile(temp,ex,cell,symbol,write), 

head.symbol.local); 

temp *- head; 

dummy «- read; 

dummy *■ ex; 

hllt(n) 

Note   that   the   transition   is   realised   by   loading   zero   and   one   with   the 

proper   successor   cells   and   then   invoking  rmi  which  executes   the   tape 

cell    function.     The   tape   cell    function   then   transfers   the   next    state 

function   description   into   ex   which   is   executed   in   the   assignment   to 

dummy 

(ii) For all halt pairs <i,x> generate: ii;state(a,b,c)d,e,f,g,h,i): hiH(n) 

(iii) Generate the following utility functions: 

firstcall(temp,ex,zero,one,head,symbol,cell). 

local <- 1; 

cell •■ blanMex.zero); 

head ♦- shifUtemp.ex.symbol.passitemp.e»,^    tol)); 

dummy *- 10state{temp,ex,zero,one,readend(temp,ex,zero,one,cell,symbol), 

»v.iteend(temp,ex)cell,symbol),head,symbol,local); 

hllt(n) 

mamttmM -■ 
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pass(temp,ex,symbol): ex ♦- symbol; temp <- a hllt(n) 

readencKterip.ex.zero.one.cell.symbol): 

ex «- null; 

symbol <- cell; 

dummy «- temp; 

dummy «- ex; 

htlt(n) 

writeendüemp.ex.cell.symbol): 

ex «- cell; 

dummy <- temp; 

cell «- ex; 

htlt(n) 

taperead(temp,ex,zero,one,cell,symbol,pred): 

dummy ♦■ pred; 

ex «- null; 

symbol ♦- cell; 

dummy «- temp; 

dummy «- ex; 

halt(n) 

--■-'—^-^-~-—     ..-^        ^-^j^-^..-.   —        ^tBM/mnagmn*. 
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tapewrite(temp,ex,cell.symbol,pred): 

dummy «- pred; 

ex «- cell; 

dummy «- temp; 

cell «- ex; 

haH(n) 

null: halt(n) 

shift(temp,ex,symbol,chain): temp ♦- chain; hllt(n) 

(iv) Genei ate the following <rec program> and augment it with the 

auxiliary functions from (i) - (iii): 

(x): temporary «- 0; 

local «- n-, 

execute «- fl; 

zerochoice «- fi; 

onechoice *■ fl; 

tapehead *- fl; 

writingsymbol ♦- Ci; 

dummy *- firstcall(temporary>execute,zerochoice,onechoice,tapehead, 

writingsymbol.local); 

MKO) 

Note   that  the  input  variable  is  unused  and  is  provided only  to   meet 

syntactic requirements. 


